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Abstract 

A collision avoidance algorithm is developed and implemented that is applicable 

to different types of unmanned aerial systems ranging from a single platform with the 

ability to perform all collision avoidance functions independently to multiple vehicles 

performing functions as a cooperative group with collision avoidance commands 

computed at a ground station. The algorithm draws on the unique benefits of several 

theoretical approaches to conflict detection and resolution and combines them into one 

algorithm while addressing the limitations of those individual methods. Techniques and 

concepts from the three theoretical fields of robotics, homing guidance, and airspace 

management are used to complete the algorithm. The algorithm is developed with a focus 

on current Air Force systems used in route surveillance missions in hostile environments. 

The collision avoidance system is exercised and tested using hardware and platforms 

from the Advanced Navigation Technology Center at the Air Force Institute of 

Technology.  

The results presented are the first known flight tests of a global, three-

dimensional, geometric collision avoidance system on an unmanned aircraft system. 

Novel developments using an aggregated collision cone approach allows each unmanned 

aircraft to detect and avoid collisions with one or more other aircraft simultaneously. The 

collision avoidance system is implemented using a miniature unmanned aircraft with an 

onboard autopilot. Various simulation and flight test cases are used to demonstrate the 

algorithm’s robustness to different collision encounters at various engagement angles. 

The flight test results are compared with ideal, software-in-the-loop, and hardware-in-the-

loop tests. 
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UAS COLLISION AVOIDANCE ALGORITHM THAT MINIMIZES THE 
IMPACT ON ROUTE SURVEILLANCE 

 
 

I. Introduction 

1. Background 

Current ground missions in Operation Iraqi Freedom and in the war on terror 

involve convoy transportation and the security of those convoys. Dangers to convoys 

include Improvised Explosive Devices (IED) that are placed on or near the road being 

used by Unites States military and coalition vehicles. One solution proposed to increase 

security around these mobile units is an unmanned aircraft system (UAS) to monitor the 

route before and during the convoy movement. The UAS could be used to detect 

insurgents placing the IEDs or to detect the IEDs themselves and alert convoy security 

before soldiers, civilians, or property are harmed.  

Many options exist for a route surveillance system concept. A single aircraft with 

on-board sensing and processing could be used, but the effectiveness would be limited 

due to the required revisit rates. A multi-aircraft system could be used to monitor an 

entire stretch of road simultaneously but may require off-board processing and a more 

complicated communication and relay system. Both system types will be exposed to an 

environment where collision potential exists with non-cooperative air traffic or 

cooperative traffic within the UAS. In order to ensure completion of its mission and the 

safe return of the aircraft, separation must be maintained between vehicles in the UAS 

and between the UAS and non-cooperative traffic whether by procedures, human 

interference, or a last line of defense, a collision avoidance system.  
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2. Motivation 

The intuitive need for collision avoidance systems in unmanned aircraft is 

apparent in the abundance of current algorithms, hardware, and complete-system 

developments for UAS of all sizes and complexity. In particular, military applications of 

UAS for defense and intelligence missions, and requirements for those missions, are laid 

out in the Unmanned System Roadmap 2007-2032 [1] and collision avoidance is 

specifically addressed in this roadmap. In fact, Chapter 6, Technologies for Unmanned 

Systems, Section 6.1, Technology Challenges, of the Roadmap states “the single most 

important near-term technical challenge facing unmanned systems is to develop an 

autonomous capability to assess and respond appropriately to near-field objects in their 

path of travel.” This technical challenge is addressed by providing “direction for future 

investments” for collision avoidance systems. 

6.6.8. Dynamic Obstacle/Interference/Collision Avoidance (Including 
Humans) 
All unmanned systems except the smallest special purpose vehicles must have the 
ability to autonomously avoid obstacles. In addition to the simple avoidance of 
obstacles (which is not simple if both the “obstacle” and the vehicle are moving 
independently), we must consider perception elements impacting trafficability, 
tactical maneuver, and mission execution. While most control algorithms are 
sufficiently mature, sensor processing is lacking for autonomous operations. 
Some combination of radar, optical, and infrared (IR) sensors will likely be 
required; and image processing algorithms, especially for the latter two, are in 
their infancy. Most of the mission capabilities also require the autonomous 
avoidance of threat systems, including ships, boats, craft, active sensor systems, 
and, to whatever extent possible, passive detection systems. The community 
would benefit greatly from increased developments in this area. [1] 
 
This Roadmap subsection affirms the need for collision avoidance developments 

in algorithms, sensors, and implementations. While control algorithms may be 

sufficiently mature, the integration of these algorithms with collision detection and 
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tracking algorithms is not mature. Additionally, analysis of commanded maneuvers for 

particular collision encounters is in its infancy. Therefore, additional research in these 

areas is warranted.   

3. Problem Statement 

Unmanned aerial systems are being widely used for intelligence, surveillance and 

reconnaissance (ISR) missions in both peaceful and wartime missions at home and 

abroad. As the number of separate systems grows and the number of unmanned vehicles 

in a single system increases, the ability to ensure the safety and integrity of the vehicles 

and ensure successful completion of missions is increasingly more difficult. Multiple 

vehicles are currently being used or are being tested for route surveillance, border and 

perimeter patrol, and support missions for all of the Unites States military services and 

other United States government agencies such as the Department of Homeland Security 

and Customs and Border Protection. Collision avoidance systems, whether implemented 

on-board the air platform or through a cooperative network, are a necessary component of 

the overall system. 

Collision avoidance systems will come in many varieties and levels of 

complexity. The type, reliability, and autonomy will depend on operational requirements 

and the system it will protect. Neidhoefer, et al. state “It was concluded that functional 

determinism in autonomous systems is crucial…both to maximize the performance and 

potential benefits of such systems and to ensure that the operational environment…is not 

degraded for any stakeholders with respect to safety, organization, or ease of operation 

[2].” Not only will collision avoidance systems need to demonstrate effectiveness at their 
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defined tasks, they will be subject to intense evaluations, both for systems with and 

without humans in the loop.  

4. Research Objectives/Hypothesis 

The objective of this research was to develop a UAS collision avoidance system 

that deconflicts potential collisions and minimizes the mission impact as several aircraft 

perform a route surveillance mission. Multi-vehicle teams will be used for persistent 

surveillance of routes that will be traveled by convoys, borders between designated 

geographic areas, and perimeters of military and civilian bases and camps. These systems 

will maintain constant coverage of the route and identify possible threats along the route 

or within the area. The persistent surveillance constraint may result in operating the UAS 

in close proximity to each other throughout their coverage pattern. Additionally, 

exogenous inputs such as wind could cause unexpected encounters between UAS in the 

coverage pattern. Research in the Air Force Research Laboratory’s Air Vehicles 

Directorate (AFRL/RB) has successfully shown efficient path planning of UAS that 

provide coverage of a route or perimeter while adding or removing UAS to the pattern 

and while changing the boundaries of the route or perimeter [3]. This research uses 

encounter geometries that may occur in these surveillance patterns as scenarios for 

potential UAS collisions. It is desired that the UAS successfully avoid the collisions and 

return to the prescribed search pattern while minimizing the impact on the sensor’s route 

coverage. Altitude separation may not be a viable separation assurance method depending 

on sensor requirements, optimal operating conditions, and surveillance methods, so this 

research does not assume trivial collision avoidance measures (e.g. altitude separation). 
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As a proof of concept, the developed algorithm was tested on a small-scale micro air 

vehicle (MAV) testbed present within the Advanced Navigation Technology (ANT) 

laboratory. The testbed allows for a scaled version of UAS collision avoidance in a 

representative route surveillance mission. 

The author asserts that a modified three-dimensional collision cone approach 

using aggregated cones and proportional navigation can successfully deconflict 

cooperative UAS in a range of encounter geometries. The algorithm will not rely on 

scripted maneuvers nor be limited to a particular spatial dimension and will provide 

commands to multiple aircraft in a cooperative network. The results will be the first 

known flight tests of a global, three-dimensional, geometric collision avoidance system 

on an unmanned aircraft system. 

5. Research Focus 

Significant amounts of research, development, and discussions in the literature 

involve the current issues of cooperative operations of UAS and airspace integration of 

those systems into airspace systems shared by manned aircraft. The term Sense and 

Avoid (SAA) is typically used to refer to the ability of an aircraft, autonomously for UAS 

and both autonomously and pilot controlled for manned aircraft, to detect a potential 

collision and command a resolution maneuver. This author defines two components to 

SAA: the longer time horizon aspect referred to as Separation Assurance (SA) that is 

dependent on procedures, mission plans, and possibly control station functions, and the 

shorter time horizon aspect Collision Avoidance (CA) that is dependent on aircraft 
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performance and response times as a last line of defense. The relationship between the 

three terms is shown in Figure 1-1. 

 
Figure 1-1:  Sense and Avoid Components 

SA and CA are not always distinguishable depending on the encounter, platform, and 

environmental circumstances; thus, there is overlap between them.  

The algorithms developed in this thesis are intended to fulfill the CA function of a 

SAA system. It is assumed that mission procedures, human operators and the ground 

control station, if applicable, conduct SA actions but fail as a result of errors or 

exogenous inputs into the system and CA actions are required. 

Planar collision encounter scenarios are of primary concern in this research 

because of the route surveillance mission operations. Planar, in this sense, describes 

multiple aircraft operating at constant above ground level (AGL) altitudes, thereby 

introducing collision possibilities while still allowing three-dimensional translational 

motion and collision avoidance reactions. Requiring constant AGL operation negates the 

trivial separation assurance procedure of altitude separation and is justified by any of the 

following reasons: 
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1. Surveillance pattern may require close proximity between platforms, 

2. Sensors may be optimized for specific AGL altitudes so altitude separation would 

adversely affect the sensor measurements, and/or 

3. Change detection requires operation at corresponding altitudes between passes 

because altitude separation would severely increase the false alarm rate. 

6. Methodology 

The steps necessary for successful development and testing of such an algorithm 

are now described. A significant amount of published basic research is used to develop 

the algorithms described in this thesis. Nonetheless, additional theory development is 

completed to extend the published theory for application to this problem. Following 

theory development, application to UAS CA is completed by focusing the research on a 

particular type of system and operation. With this information, tests can be identified to 

exercise the algorithms and performance measures can be enumerated.  

Testing must be performed in a sequential manner with increasing uncertainty and 

complexity added in each step. First, ideal simulations are used to verify algorithm 

theoretical capabilities. For example, collision detection is tested in an ideal simulation 

by constructing an encounter guaranteed to result in a collision. Similarly, collision 

avoidance is tested using the same encounter and is successful if the collision is evaded. 

Assumptions are applied in these simulations such as simplified three degree-of-freedom 

dynamics and perfect command tracking, thereby, alleviating any uncertainty.  

Next, complexity is added by testing the algorithm in a representative 

environment that it will ultimately operate in. Software-in-the-loop (SIL) simulation 
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capability is offered by the manufacturers of the UAS selected for integration. Interfaces 

between the CA algorithm and the system environment are developed in order to 

complete SIL and follow-on tests. The interface is defined in such a way so that it can be 

used on the actual operational system. SIL simulations add necessary uncertainty that 

exists in real-world applications and can be used as a gateway so that if they are not 

successful, progression to the next step is halted until major problems are resolved.   

Further complexity and uncertainty is added with the next test type that is also 

offered by the manufacturer of the selected UAS. Hardware-in-the-loop (HIL) tests 

require use of actual external hardware and firmware that will either be onboard the 

aircraft platforms or used on the ground during actual operation. Most firmware and 

integrated software should be identical to that in the SIL tests, but additional 

communication and processing uncertainty now exists when operating on several 

different machines. When HIL and SIL results compare favorably, the algorithms and 

associated interfaces are ready for testing in a fully operating system and are ready for the 

next phase of testing.  

The culmination of the CA system’s development is flight test. A successful 

demonstration in flight test, with real-world uncertainty, complexity, and environmental 

effects, will solidify claims of the algorithm’s effectiveness in its particular application. 

Flight test procedures and objectives must be carefully planned and executed in order to 

demonstrate the CA system’s intended operation and to return results supporting the 

system’s use in future UAS missions. Flight test cases must be constructed properly to 

represent scenarios that will exist in actual operation. Finally, data reduction following 
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the flight test is necessary to communicate the test’s successes, failures, and potential 

follow-on improvements for the CA system.  

7. Assumptions/Scope 

This research develops and exercises a UAS Collision Avoidance Algorithm That 

Minimizes the Impact on Route Surveillance. It should be noted that no optimal control 

or optimal trajectory generation is used in this algorithm. That is not to say, however, that 

portions of the algorithm would not benefit from the use of such theory in the future. The 

CA algorithm is intended to monitor traffic internal and external to a cooperative network 

of UAS platforms. It will detect imminent collisions between any one of the platforms 

and another aircraft and command an appropriate guidance maneuver. The maneuver, 

based on the geometry of the collision and minimum separation definitions, tends to 

command small deviations to maintain minimum separation; thus, minimizing the 

maneuvering and its effect on the mission although not in an optimal sense. Additionally, 

the guidance laws applied here initially command small maneuvers that will grow in 

magnitude as the range decreases between the aircraft. Thus, collision encounters that are 

mitigated early in the encounter timeline will have been resolved with small commands 

minimizing impact on the mission. The algorithm does not provide a recovery course of 

action or commands to return the platforms back to their original trajectories. It does, 

nonetheless, return control of the UAS, after the collision encounter has been abated, 

back to the navigation algorithm embedded in the hardware. The navigation function is 

then used to determine the appropriate route back to the surveillance pattern. The 

algorithm is applicable to many different systems and operations but is limited in this 
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research to a single available system. This system does not allow onboard processing or 

sensing, and therefore, cannot detect external collisions outside of the cooperative 

network. Throughout the development of the CA algorithm, the potential for external 

threats is considered and the CA algorithm supports inputs from any sensing device 

provided the data is sufficient and in the proper format.  

8. Preview 

Chapter II of this thesis will review applicable theory and applications developed 

in seminal and contemporary literature. Chapter III discusses original theory, algorithm, 

and software developments by this author in addition to hardware and software provided 

by the ANT lab and used in this research. Chapter IV provides analysis and results of all 

testing performed throughout the research. Chapter V discusses the results and 

communicates the author’s conclusions, conjectures, and recommendations for future 

researchers and/or users.  
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II. Literature Review 

1. Chapter Overview 

A significant amount of research and development has been ongoing for years 

involving the higher level topics of SAA and conflict detection and resolution (CD&R) 

and the lower level functions of SA and CA that are encompassed by SAA and CD&R. 

Collision avoidance, as discussed in this thesis, is defined as the detection of an imminent 

collision or violation of some minimum separation distance and a commanded avoidance 

maneuver after SA has failed. Before unmanned aircraft became prevalent, most of this 

research was directed towards commercial aircraft in the United States National Airspace 

System (NAS) and in ground-based robotics. Similar techniques and systems have been 

applied to the UAS collision avoidance problem as well as a variety of newly proposed 

methods. The UAS sub-systems involved in these processes are commonly referred to as 

SAA systems and detect, sense, and avoid systems (DSA). The following sections 

describe common methods applied to UAS CA and examples of implementation or the 

development of each. 

Kuchar and Yang present a broad review and survey of CD&R methods in two 

papers [4] [5]. These papers discuss a wide array of methods applied to the CD&R 

problem to the date of their publications. Section 2 of this chapter reveals current 

developments in recent years to this field and key information for each.  

When characterizing, comparing and contrasting collision avoidance approaches, 

one must describe certain properties of the proposed methods. Kuchar and Yang group all 

algorithms and approaches based on state dimensions, resolution maneuvers, and multiple 
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conflict properties of the algorithms. Dowek and Munoz further define these categories 

[6]. State dimension refers to two or three-dimensional conflict modeling for the 

detection and avoidance of collisions. Two-dimensional modeling typically concentrates 

on a horizontal or vertical plane only. Resolution maneuvers are characterized also by the 

number of dimensions they inhabit. For instance, a maneuver only in the vertical plane 

would be limited to altitude and airspeed changes and would not allow a turn maneuver. 

Multiple conflict properties describe whether a system views CA in the global or pair-

wise sense. Global CA involves all aircraft in the airspace which the algorithm considers 

when monitoring the dynamic airspace, detecting collisions, and commanding 

maneuvers. This is global in the sense that the UAS considers all threats that it is aware 

of simultaneously. This method applies to both cooperative and non-cooperative aircraft. 

Pair-wise avoidance involves one UAS and one intruder regardless of the surrounding 

environment. Encounters between aircraft are resolved one at a time but can include 

considerations for future conflicts or maneuvers. Nonetheless, subsequent avoidance 

maneuvers by one UAS avoiding multiple intruders in a pair-wise fashion are not 

considered global. Pair-wise is also applicable to cooperative and non-cooperative 

aircraft. 

2. Methods 

2.1. Geometric 

Geometric collision detection and avoidance methods involve geometric 

properties of aircraft trajectories and utilize positions and velocity vectors of all or 
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some aircraft involved in the encounter. Geometric methods can be used for collision 

detection by comparing velocity vectors of vehicles and obstacles, and can aide in 

collision resolution/avoidance by providing encounter geometry to the resolution 

guidance algorithm.  

Chakravarthy and Ghose proposed a geometric collision detection and 

avoidance method in a dynamic environment with no constraints on vehicle shape or 

size. Their concept, the collision cone approach, originally developed for robotics, 

has proven to be a valuable foundation for other geometric approaches and methods 

and has been cited many times in the literature [7]. Using state information from the 

vehicle and obstacles, the collision cone approach analytically defines a collision 

region for which a collision is imminent if the vehicle velocity vector lies in this 

region. A thorough outline of the algorithm is given in addition to a number of 

examples by the authors in their publication.  

A collision detection and avoidance approach referred to as the geometric 

optimization approach has been proposed [8]. This geometric collision detection 

method is a typical comparison of velocity vectors, but the resolution is optimized in 

the sense that it attempts to minimize the deviation from the nominal trajectory. The 

author also discusses the geometric optimization approach for multiple intruders but 

limits the effort to sequential avoidance of the most critical encounter. This is still 

considered pair-wise CD&R as opposed to global. Bilimoria noted “that resolutions 

for multiple-aircraft conflicts obtained by sequential pair-wise solutions do not 

necessarily minimize deviations from the nominal trajectories.” Therefore, the 
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minimum deviation from the nominal trajectory may not be a combination of pair-

wise encounter maneuvers, and the solution must be examined in the global sense. 

Goss, Rajvanshi, and Subbarao consider the conflict detection and resolution 

problem using geometric and collision cone approaches for two aircraft in a three 

dimensional environment [9]. The pair-wise avoidance solution is found using the 

collision cone approach to detect a collision and generates a combination of velocity, 

heading, and elevation changes to avoid the collision. Analytical solutions are 

rigorously found for special encounter situations, but a numerical solver is used for 

more general cases. Numerical solutions are not ideal for real-time applications, and 

according to the authors, “the nonlinear equation solver has a tendency to get stuck at 

spurious updates in more complex scenarios.” This pair-wise solution method would 

only increase in difficulty for simultaneous multiple intruders. 

A pair-wise non-cooperative decision making algorithm for three-dimensional 

collision avoidance was presented by Carbone, et al. The authors contend their 

collision avoidance method is suitable for real-time applications because of analytical 

solutions that do not require numerical programming [10]. Similarly to Goss, 

Rajvanshi, and Subbarao, Carbone’s three-dimensional geometric method is based on 

the collision cone. Numerical simulations are offered to demonstrate the algorithm’s 

ability to maintain minimum separation while including sensor field-of-view 

limitations. The resolution algorithm, nevertheless, does not utilize all three of its 

control variables (i.e. longitudinal, lateral-directional, and speed) at the same time. 

However, comparisons of the three are presented. 
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2.2. Force Field 

Force field methods are global approaches to CD&R. Vehicles can 

individually be represented as charged particles and repulse each other given position 

and velocity information of each or the entire airspace can be defined as a potential 

field or magnetic field and vehicles are maneuvered based on the global environment. 

This method is suited for distributed collision avoidance where state information is 

readily available from all vehicles, but can be applied to local avoidance when the 

number of vehicles is small.  

Despite the distributed and global aspects of force field methods, several 

elements of these approaches are difficult to incorporate into practical systems. When 

generating a dynamic potential field, saddle points and local minima can disrupt the 

flow of vehicles and introduce additional problems such as aircraft stall or further 

collision threats. As eluded to previously, aircraft performance and dynamic 

characteristics must be taken into account when generating a field or evasive 

commands. If complete state information is not known for all vehicles or if a 

magnetic/potential field is not properly formed, aggressive control commands may be 

generated that are outside of the vehicles’ abilities. 

Sigurd and How investigate a “total-field sensing approach of magnetic 

nature” focused on systems with a large number of N vehicles [11]. The authors assert 

that local control approaches break down as N grows and the complexity and 

potential for collision grow exponentially. Also, many previous potential field 

approaches required perfect information or perfect sensing for safe maneuvering 
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through the obstacle field. Complexity and imperfect information, or lack of 

information, say Sigurd and How, necessitate a distributed control approach. The 

authors provided simulation results and a hardware experiment as advocates for their 

algorithm. Although their discussions of increasing collision potential as N grows and 

the benefits of distributed control are thorough, the authors’ approach has many 

drawbacks to aircraft collision avoidance. All vehicles would be required to carry a 

magnetic field generating device and a magnetic field sensing system, limiting this 

approach to cooperative collision avoidance.   

A multiple-vehicle UAS deconfliction algorithm based on potential functions, 

referred to by the authors as navigation functions, was developed and presented by 

Rahmani, et al. [12]. The approach addresses conflict prediction, resolution, 

navigation and control of flying vehicles while obeying mission requirements. 

Simulations are described that support their approach. This paper expands traditional 

potential methods by using maneuvering obstacles, ensuring vehicles are in constant 

motion and embedding mission requirements in the construction of the navigation 

function. Aircraft operational limitations are included in the formulation of guidance 

and control commands. Stagnation problems, a typical drawback of potential 

functions for flying vehicle applications, are dealt with in this paper with the addition 

of a swirling effect in the potential function. This, however, detracts from the 

compliance with vehicle operational limitations formulated in the original function. 

Consequently, vehicle motion constraints and maneuver constraints cannot be 
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guaranteed simultaneously. Saddle points are also a complication in the potential 

function and would cause a catastrophic effect in real applications.     

2.3. Probabilistic 

Probabilistic methods for aircraft CD&R may involve the calculation of the 

probability of collision based on current aircraft states and possible perturbations 

about that nominal state or the probability of collision based on all possible 

maneuvers and their likelihood of occurring. These methods avoid the 

conservativeness of worst-case prediction methods while maintaining robustness to 

uncertainty [13]. Statistical representations of the airspace environment, for global 

applications, and of its inhabitants, for pair-wise applications, must be characterized 

prior to algorithm design. Detailed knowledge of the airspace and its inhabitants is 

required and is used, typically, in Monte Carlo simulation for characterization.  

Prandini, et al., 1999 and 2000, present approaches for probabilistic conflict 

detection for mid-range and short-range conflict scenarios [13] [14]. The authors 

define mid-range conflicts in the time horizon as tens of minutes and short-range 

conflicts as seconds to minutes. The probability of conflict is characterized by Monte-

Carlo simulations and, in some special cases, closed form solutions are presented. 

These papers are focused primarily on the Air Traffic Management System (ATMS) 

and aircraft following flight plans and their respective waypoints. The CD&R 

functions are computationally intensive and require closed-form approximations and 

estimating algorithms for real-time applications.  
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Probability based methods have been applied to non-aircraft conflict 

detections [15]. Although the application is quite different, derivations of time to 

closest approach (TCA) and minimum miss distance (MMD) for spacecraft could be 

applied to aircraft as long as linear assumptions are valid. Simulation and 

experimental results were used to validate the probability of collision calculations.  

Probabilistic methods specifically for UAS collision avoidance are discussed 

in three dimensions assuming UAS constant velocity [16]. The collision is 

decomposed into a horizontal plane and a vertical plane, and minimum separation 

criteria are defined for each plane. Probabilistic trajectory modeling is accomplished 

by modeling uncertainty in own-ship and intruder position and velocity obtained from 

a data-link system and in intruder maneuvering uncertainty. Threat levels are defined 

for probability of collision values determined from Monte-Carlo simulations. Scripted 

maneuvers are defined for each threat level in three dimensions although in 

simulation only vertical maneuvers are performed. The authors attribute this to the 

minimum separation definitions which make vertical maneuvers less aggressive.  

2.4. Other Methods 

Collision avoidance is a primary topic in swarming/flocking research of birds, 

insects, and other animals with applications to multiple aircraft operations in close 

proximity. Park, Tahk, and Bang discuss the historical evolution of swarming/ 

flocking research in computer graphics, gaming, and most importantly, aerospace 

applications [17]. The authors reference Reynolds’ research of flocking behaviors and 

steering behaviors and his creation of “boids” (bird-oid) in flocking simulations [18] 
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[19]. Flocking can be modeled using three distinct and simultaneous behaviors, one of 

which is collision avoidance. Also, sub-behaviors were defined that make up the three 

main behaviors. Those sub-behaviors that relate to collision avoidance include 

fleeing, evading, and obstacle avoidance. Many of these basic functions are 

implemented using geometric techniques of summing or aligning velocity vectors.  

Park, Tahk, and Bang implement CA in a pair-wise sense by defining a 

“safety-bubble” around the boid (aircraft) and commanding a scaled steering 

command opposite of the line of sight direction to the closest boid violating the 

bubble. This method is tested in three degree-of-freedom simulations.  

A recent development in CA does not involve a detection or control method, 

but involves a spatial representation with which to define the avoidance approach. 

The Curvature-Velocity-Orientation (CVO) Method transfers aircraft motion from 

Cartesian space into CVO space and applies a potential field CA method for obstacle 

avoidance [20]. The potential field method transformed into CVO space is designed 

to take into account aircraft dynamic constraints making its application to UAS CA 

more achievable. Successful simulation results are shown but only for stationary 

obstacles. Also, the CVO results, as compared to the Cartesian space counterpart, 

contain undesirable oscillations in its final trajectory. 

3. Flight Tests and Notable Simulations 

Notable simulations of CA system responses to collision encounters include tests 

by Farley and Erzberger, and Paielli [21] [22]. Farley and Erzberger used recorded 

Federal Aviation Administration (FAA) air traffic data in the Cleveland Air Route Traffic 
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Control Center airspace to test their conflict resolution algorithm in nominal and heavy 

traffic conditions. Paielli used archived data of actual loss of separation due to controller 

error tracking data to test his method of solving imminent air traffic conflicts. The 

archived data consists of 100 operational error occurrences caused by the controller, 

which, according to Paielli, tend to be more difficult to detect and resolve than routine 

conflicts that get resolved successfully. 

Another interesting simulation implementation of a CA system was focused on 

vision-based obstacle avoidance for UAS. The respective avoidance algorithm is based in 

Minimum Effort Guidance and was compared to proportional navigation guidance in a 

sequence of publications [23]. This guidance method was then tested using a six degree-

of-freedom image-in-the-loop simulation set-up to exercise the vision-based detection 

algorithms and the subsequent avoidance maneuver [24]. Results of image processing, 

estimation, and guidance are analyzed. Image processing post-analysis shows the image 

processing algorithm did detect the obstacles but not as expected. The guidance system 

performed as expected and maintained required separation from the obstacles, but a 

significant limitation of these results is that the obstacles were stationary. 

Significant amounts of hardware and software-in-the-loop simulations and 

calibrations, including communication system latencies, have been performed to prepare 

an obstacle detection, tracking, and CA system for flight test [25]. Ground tests 

characterizing system behavior and latencies are being performed for algorithms and 

sensors, both electro-optical (EO) and radar, and statistical performance properties of 

these have been defined.  
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A successful flight test of a maneuvering aircraft around another stationary, 

hovering aircraft was described by Neifhoefer, et al. [2]. The authors’ intent was to 

demonstrate that practical implementations of highly autonomous functionally 

deterministic systems are possible. “Highly autonomous” in the previous sentence is a 

broad statement that could include traditional fly-by-wire autopilots or systems with 

high-level autonomy that involve complex decision-making or interaction with humans. 

The UAS in this experiment was commanded to fly a straight line path to a point along 

which it would collide with another aircraft. The collision avoidance system detected a 

collision and generated a safe, modified trajectory around the other aircraft to the goal 

point. Additionally, the modified path could be controlled and the resulting direction of 

the avoidance maneuvers was thereby changed. Results of the flight test are shown and 

conclusions are made about the feasibility of functionally deterministic systems being 

used on UAS. 

Large scale flight tests have been completed by Northrop Grumman Corp. and 

AFRL using the variable-stability Calspan Learjet as a UAS surrogate aircraft [26]. These 

flight tests investigated the feasibility and effectiveness of the Traffic Alert and Collision 

Avoidance System (TCAS), a human-in-the-loop collision warning system used on 

today’s commercial aircraft, in an autonomous collision avoidance role. The benefits of 

using TCAS in future UAS sense and avoid systems were shown through analyses of the 

flight test results. The tests consisted of a variety of encounter scenarios between the 

surrogate UAS and intruder aircraft: 1) level head-on, 2) abeam, 3) ascending head-on, 

and 4) descending head-on.  
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4. Summary 

Chapter II provided a comprehensive, but not all-inclusive, overview of methods 

and techniques that have and are being applied to collision detection and avoidance. The 

most common methods were discussed by providing examples of their uses, from 

theoretical derivations to modern applications. The topic of UAS CA has been 

exhaustively researched, but no solution yet exists that can provide a generic capability 

for effective and safe CA for all aerospace applications. It is not this author’s intent to 

undertake this daunting task; this thesis is meant to provide a capability for the UAS 

mission described in Chapter I and that is applicable to other UAS civil and military 

operations.  

Geometric methods provide the most straightforward and extensible collision 

detection and avoidance techniques. A large amount of research has been completed on 

these approaches as they apply to UAS CA. However, no single existing solution 

addresses three-dimensional CA in the global sense for cooperative UAS operations. 

Cooperative, as defined in this research, is the exchange of information between UAS, 

either directly between platforms or through some single control station. Force field 

methods are well suited for global collision avoidance, but drawbacks such as including 

UAS performance limits and expansion to three-dimensional applications hinders their 

use. Probabilistic methods accommodate uncertain air traffic environments that can be 

described by statistical properties. This, however, requires modeling the probability of 

future trajectories for all entities in the environment, both cooperative and non-

cooperative. Geometric methods address cooperative and non-cooperative traffic in the 
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same manner by comparing nominal trajectories using state information from either a 

cooperative network or sensors. This research focuses on the cooperative network of 

UAS, but the resulting algorithm is compatible with other sensed traffic. A geometric 

method, based on the collision cone approach [7], is used as the foundation for a three-

dimensional global collision avoidance algorithm for UAS collision avoidance. 

The collision cone approach has concurrently been expanded to three dimensions 

and applied in the global sense by this thesis’ author but only for a single UAS [27]. 

Considerable amounts of additional research and development is needed for a novel and 

robust algorithm that manages both cooperative and non-cooperative traffic and detects 

imminent collisions and issues avoidance commands to a group of UAS. That type of 

algorithm does not yet exist in a single solution and certainly has not been flight tested 

according to an extensive literature review. This research engages both the algorithm and 

implementation deficiencies, and flight tests the resultant solutions.
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III. Methodology 

1. Chapter Overview 

As discussed in Chapter II, the collision detection and avoidance method being 

employed in this research is based on the collision cone approach. According to the 

geometry of the encounter and the rates of change of translation and orientation, safe 

regions of flight are defined by the algorithm for each UAS in the cooperative network. 

In order to complete the algorithm, each UAS must be directed to safety in a manner 

consistent with the geometry of the encounter. Consequently, an algorithm providing 

guidance commands that are integrated with the detection algorithm is developed and 

refined for UAS CA.  

A generic architecture, represented in pseudo-code, is shown in Figure 3-1 and 

describes in detail the process flow of a CA algorithm integrated with the navigation 

system of a UAS. The acronym GCS stands for ground control station which is the 

controlling unit that commands all UAS in the cooperative group. This research will not 

address all possible CA functions shown in the figure (see Chapter I, Section 7). Non-

cooperative traffic will not be considered so Function 2 under “IF COMM LINK -> 

GUID_MODE” is not performed. Similarly, “ELSEIF NO COMM_LINK” is not 

considered, because information must be transmitted between aircraft for cooperative 

CA. Lastly, RECOVER_MODE is assumed to be the navigation mode of the UAS and is 

not considered in this CA system. 
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Figure 3-1:  CA Algorithm Pseudo-Code 

IF COMM_LINK 
 
 GUID_MODE 

1) Monitor Cooperative Airspace (GCS) 
- Collision detection algorithm 

 
IF NO_CONFLICT 

1) Fly Surveillance Pattern 
 
ELSEIF CONFLICT 
 CA_MODE 

1) Do Not Maneuver 
- Not immediate threat 
- Continue monitoring cooperative airspace 

2) Maneuver 
- Function of range, threat maneuvering, priority 

to maneuver, own status (are you the threat) 
- Rules of the road 

RECOVER_MODE 
 IF NO_NEW_CONFLICT 

1) Recover 
ELSEIF NEW_CONFLICT 
 CA_MODE  
 

2) Monitor Non-cooperative Airspace (On-board sensing) 
- Requires on-board detection algorithm for non-cooperative traffic 

in addition to GCS detection algorithm for out-of-view cooperative 
traffic 

 
IF NO_CONFLICT 
 Same as above 
ELSEIF CONFLICT 
 Same as above 
 

ELSEIF NO COMM_LINK 
 

 GUID_MODE 
1) GCS Only 
 

i) Prescribed altitude separation 
ii) Loiter at current position 
iii) Loiter at prescribed location 
iv) RTB 

 
2) On-board sensing 

 Modes: 
GUID_MODE – route surveillance guidance mode, collision detection algorithm 

monitors UAS airspace 
CA_MODE – collision avoidance system mode, assumes control from guidance mode, 

flagged by detection algorithm 
RECOVER_MODE – recovery mode from collision avoidance to route surveillance, only 

initiated after CA_MODE 
 
Status: 
COMM_LINK – health of communication link (binary or threshold) 
NO_CONFLICT – detection algorithm status 
CONFLICT – detection algorithm status, initiates CA_MODE 
NO_NEW_CONFLICT – recovery mode status, initiates recovery maneuver 
NEW_CONFLICT – recovery mode status, initiates CA_MODE 
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2. Theory and Algorithms 

The collision cone approach uses position, velocity, orientation, and orientation 

rate to determine if the nominal, or dead-reckoned, trajectories of two or more vehicles 

will result in a violation of some minimum miss distance [7]. This approach applies to 

any irregularly shaped object and depends only on current flight path information. 

Chakravarthy and Ghose derived the planar algorithm that defined the angular bounds of 

the collision cone. Smith, et al., derived the angular rates of change of the cone bounds 

and described their use in a three-dimensional CA control scheme based on Proportional 

Navigation (PN) guidance [27]. These two algorithms combined form the foundation of a 

robust and expandable CA algorithm that is compatible with real-time applications.  

A collision cone is the region within which the velocity vector of a vehicle will 

violate an obstacle separation zone or collide with that object. The cone is a function of 

current states only but is numerically straightforward and not computationally intensive. 

A comprehensive description of the algorithm is given in Reference [7]. The 

nomenclature is repeated here for convenience. Figure 3-2 shows two-dimensional 

collision cones for three generic encounter cases. A single intruder can have as many as 

two collision cones if it is a collision threat, and for N intruders, there can be as many as 

2N cones. In Figure 3-2, a blue arrow represents an aircraft velocity vector, a black circle 

defines the minimum separation area around a collision threat, a blue line represents the 

line of sight, red lines are the collision cone bounds, and green arrows point to the interior 

of the collision cone. 
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           (a)             (b)            (c)  

Figure 3-2:  Two Dimensional Collision Cone Configurations (a) Single Cone (b) 
Split Cone (c) Multiple Intruders, Single and Split Cones [27] 

Alpha, α, is the UAS velocity vector direction defined as positive counter-

clockwise (CCW) from the x-axis. Beta, β, is a potential threat’s velocity vector direction 

also defined positive CCW from the x-axis. Gamma, γ, is the UAS vertical flight path 

angle defined positive up. Chi, χ, is the potential threat’s vertical flight path angle. Theta, 

θ, is the horizontal plane line-of-sight (LOS) angle from a UAS to a particular threat 

defined as positive CCW. Phi, φ, is the vertical plane LOS angle defined along the UAS 

velocity vector and positive up from the horizontal plane. Range, r, can be used to 

represent the horizontal distance between two aircraft or the slant-range distance. The 

horizontal minimum separation radius is given by R and defines the lateral separation. 

The vertical minimum separation is referred to as the vertical offset (VO). The collision 

cone boundaries are given as a lower and upper angular bound, α1 and α2, respectively. 

Similarly, their rates of change are  and , where (•) represents time rate of change. 

Smith, et al., derived the rates of change of the cone bounds, and these equations are 

repeated in Appendix B with some additional simplifications. Each collision cone has its 

own set of boundaries and rates, and each plane has its own set of cones. The bounds and 
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their rates of change are defined entirely by the encounter geometry, including range, 

speed, heading, and the minimum separation distance. The bounds and bound rates 

returned by the extended collision cone algorithm are normalized by the LOS angles and 

their rates and are given by , respectively. The absolute bounds are 

given by Eq. (1), and their rates by Eq. (2). The vertical plane representation is given by 

simply replacing θ with φ and applying the appropriate upper and lower bounds.  

                                                            (1) 

                                                            (2) 

The collision cone approach is valid for irregularly shaped objects. These oddly 

shaped objects are decomposed into circular regions that can be used to define a 

minimum separation zone around the object. This also allows different definitions of 

minimum separation in the lateral and vertical directions. Many of the geometric-based 

CA algorithms discussed in Chapter II assume a spherical safety zone around obstacles 

and other aircraft. This assumption simplifies the derivation of some detection and 

avoidance algorithms but does not allow the flexibility of independent separation 

distances in the horizontal and vertical planes. The minimum separation volume in this 

research uses definitions from the Federal Aviation Administration (FAA) of aircraft 

encounters. The FAA classifies the encounter’s criticality by the horizontal separation 

and vertical separation of the aircraft involved. Likewise, a lateral and vertical separation 

forming a cylinder in three dimensions is used for this research. When viewed in the 
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horizontal plane, the cylinder appears as a circle and the collision cone algorithm can be 

applied directly. When viewed in the vertical plane, the cylinder appears as a rectangle 

that must be decomposed into a circle for application of the algorithm. Lines extending 

from a particular UAS location tangent to the rectangle’s protruding corners in the 

vertical plane can be found, and a circle residing in these lines whose boundary is also 

tangent to them can be defined. The radius of this circle changes as the range from the 

UAS to the center of the circle changes. By selecting the range to the center of the circle 

to equal the range from the UAS to the threat, the radius of the circle can be found. 

Reference [7] gives this relationship and it is repeated in Eq. (3). 

                                                     (3)      

With the definition of a radius for the minimum separation in the vertical plane, the 

collision cone approach can now be directly applied. The vertical plane geometry as 

viewed by the algorithm is shown in Figure 3-3. 

 
          (a)                     (b) 

Figure 3-3:  Collision Cone Approach in the Vertical Plane (a) Single Cone (b) 
Multiple Intruders, Single and Split Cone [27] 
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The line and arrow features in Figure 3-3 are the same as described for Figure 3-2, 

except the black circle is replaced by a black rectangle for the minimum separation area. 

Grey dashed lines project from the UAS velocity vector and are tangent to the rectangles 

protruding corners. The resultant separation circle calculated using Eq. (3) resides inside 

these lines and is also grey and dashed. 

Given collision cone angular bounds and their rates of change defined in two 

planes, the horizontal and vertical, as a function of different separation criteria for 

minimum lateral separation and vertical offset, a sufficient description of the encounter 

geometry exists for CA. It is a simple extension from a single three-dimensional cone for 

a single obstacle to multiple cones for several obstacles. The modified collision cone 

algorithm is simply executed for each obstacle. However, this gives only a disassociated 

view of the threat environment and represents sequential pair-wise collision detection. A 

conservative, yet effective, approach to providing global collision detection is to 

aggregate overlapping individual collision cones in their respective planes into a single, 

all-encompassing cone that describes every potential obstacle threat in that region. 

Multiple collision cones are still possible if there is no overlap. The aggregate cone 

method guarantees the velocity vector will only exist in a single cone, and any necessary 

avoidance maneuvers are with respect to that single cone. Thus, the assignment of 

commands is not confounded by prioritization of individual threats or selection schemes 

of a set of maneuvers and no conflicting commands are issued. Figure 3-4 gives a visual 

representation of aggregating cone bounds. 
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Figure 3-4:  Aggregate Cone Bounds 

Figure 3-5 gives a complete description of key attributes of a two-ship encounter as 

viewed by the aggregate multiple vehicle UAS collision cone algorithm. 

 
Figure 3-5:  Full Encounter Description 
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Using collision cone information about the angular bounds and their rates of 

change, guidance commands can be generated in concert with the geometry of the 

collision. Han and Bang, and subsequently Han, proposed a proportional navigation 

based CA scheme for UAS CA [28] [29]. They found the relative velocity vector of the 

UAS could be guided to a “collision avoidance vector” with proportional navigation and 

thereby alleviating the collision. Han also went as far as deriving the optimal proportional 

gain assuming constant velocity and investigated convergence of the guidance law as a 

function of the navigation constant. In this application to cooperative UAS CA, a similar 

approach is used for the CA guidance commands. The UAS velocity vector is chosen 

instead of the relative velocity vector because the collision cone approach is used instead 

of the geometric configuration approach discussed by Han. Han uses a geometric 

comparison of the relative velocity vector and the tangents to a minimum separation zone 

around an obstacle to define the guidance parameters. By using the collision cone 

approach, a collision detection method is not limited to a single vector comparison but is 

able to define an entire region of unsafe operation. The UAS velocity vector can then be 

guided outside of this unsafe region instead of just a single obstacle cone. Once the 

velocity vector is coincident to the edge of the aggregate collision cone, the UAS is 

guaranteed to maintain minimum separation by flying a trajectory that results in tangency 

to the minimum separation volume. At this point, guidance commands may cease and the 

cone and velocity vector are monitored for future violations. The proportional navigation 

guidance law used in this UAS CA algorithm is shown in Eq. (4). 

                                                       (4) 
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In Eq. (4), a is the commanded acceleration, N is the navigation constant, VUAS is the 

UAS velocity, and  is the cone bound rate used for guidance (read on for a description 

of its selection). This guidance law is a variation of generalized true proportional 

navigation [30] where the commanded acceleration a, or, synonymously, angular rate, is 

perpendicular to the line of sight offset by a fixed angle. This offset angle is the 

normalized cone bound angle calculated using the collision cone approach that is then 

added to the line of sight to form the absolute cone bound. The proportional gain, which 

Han proved must be greater than one for convergence, is chosen depending on aircraft 

maneuverability and the geometry of typical encounters. 

Which cone bound angular rate is used in the guidance law is chosen based on the 

magnitude and direction of the bound movement. For instance, a contracting cone could 

either have both cone bounds converging towards the center of the cone, or one cone 

bound converging to the center faster than the other bound that is diverging. Similarly, an 

expanding cone either has both cones diverging or one bound diverging faster than the 

other converging bound. The angular rate used in the guidance law depends on whether 

the cone is diverging or converging, whether the bounds are moving in the same or 

opposite directions, and the magnitude of each bound angular rate. The preceding 

discussion applies to both the horizontal plane and the vertical plane. The following 

tables, Table 3-1 and Table 3-2, define the logic for the guidance law angular rate choice 

and the corresponding angle choice. Blue shading denotes a diverging cone and green 

shading denotes a converging cone. Subscript 1 implies the upper cone bound and 

subscript 2 implies the lower cone bound. 
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Table 3-1:  Guidance Law Angular Rate Matrix, Horizontal Plane 

  
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 

Table 3-2:  Guidance Law Angular Rate Matrix, Vertical Plane 

  
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 

The logic is based on intuition and trial and error. For example, if both cone 

bound rates are positive, it would require minimal effort to deconflict by maneuvering in 

the opposite direction, allowing the cone to move away from the velocity vector in 

addition to the vehicle moving its velocity vector out of the cone. This is visually 

depicted in Figure 3-6.  

 
Figure 3-6:  Guidance Logic Example 

Cone Rates 

Resultant  
Turn Rate 
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Assuming Figure 3-6 is in the horizontal plane, it corresponds to the first column 

in Table 3-1. More information (i.e. magnitude of the bound angular rates) is needed to 

determine the corresponding row. 

When overlapping cones are combined into an aggregate cone, the new cone 

bounds are used in the guidance logic when choosing which angular rate to use in the 

guidance law. The bound corresponding to the angular rate choice used in the guidance 

law is maintained throughout the encounter as the guidance bound selection in order to 

prevent oscillating commands resulting from bound switching. Bound switching could 

occur if two separate cones overlap in the middle of the encounter or if an individual cone 

inside of the aggregate cone envelops another individual cone. 

The guidance commands generated independently from the horizontal and vertical 

planes are decomposed into components along and perpendicular to the UAS velocity 

vector. Once decomposed, they can be combined into a single set of commands in three 

dimensions. These commands are turn rate ( ), translational acceleration ( ), and rate 

of change of the vertical velocity vector ( ). The formulation of the guidance commands 

is shown in Eqs. (5-7). 

                                              (5)  

                        (6) 

                      (7) 

Subscript c denotes a command, h denotes horizontal plane, and v denotes vertical plane. 

Subscripts 1 and 2 represent the upper or lower cone bound, respectively. VUAS is the 
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aircraft velocity. It should be noted that because of the definition of α, the turn rate 

command shown here is opposite in sign as typical turn rate definitions where heading is 

defined as positive clockwise (CW) from the y-axis (North).  

Alternative commands can be derived from these basic commands depending on 

the application and autopilot. A set of such commands are shown below in Eqs. (8-10).  

                                                           (8) 

                                                          (9) 

                                                        (10) 

Integration operators in the equations above are calculated using Euler integration. The 

symbol ψ represents UAS heading and is defined positive CW from the y-axis. Theta, θ, 

in this context, represents the UAS pitch angle. This command is generated under the 

assumption of small angle of attack and a small delay between changes in pitch and 

changes in flight path angle.  

Smith, et al., described an own-ship UAS CA algorithm based on the collision 

cone approach [27]. This algorithm detected potential collisions with multiple intruders 

and commanded avoidance maneuvers to the UAS. It was assumed the intruder states 

were known, either from a communication network, or from on-board sensors. This 

algorithm is used as the foundation for a cooperative multiple vehicle UAS CA system. 

Because of the variety of UAS architectures, the cooperative UAS algorithm must be 

compatible with many systems. For instance, a UAS could consist of multiple 

decentralized platforms each with a CA system on-board, but with the systems acting in a 
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synergetic manner. Or, a system could consist of multiple platforms controlled by a 

centralized ground control station which commands the UAS and carries the burden of all 

CA processing. Therefore, the own-ship CA algorithm was modified to incorporate 

cooperative platform inputs internal to the UAS and non-cooperative threat inputs 

external to the UAS and provided by some sensor suite independently. It does not matter 

inside the modified collision cone algorithm whether the inputs are from cooperative or 

non-cooperative entities, but on real systems the means by which to acquire the inputs 

differs greatly (e.g. from the GCS or from the onboard sensors).  

The modified and aggregate collision cone algorithm is extended to cooperative 

multi-vehicle UAS CA by executing the modified collision cone algorithm independently 

for each UAS. In each iteration, a different UAS is treated as the own-ship and the other 

UAS and any other sensed threat is treated as a moving obstacle. Consistent collision 

detections between conflicting UAS are inherent because the encounter geometry is a 

mirror image of the other. Commands generated by the proportional navigation guidance 

can be treated in a coordinated or uncoordinated manner. Coordinated is defined in this 

research as a synchronization of commands between multiple cooperative UAS reacting 

to the same collision encounter. Cooperative and coordinated CA is potentially extremely 

efficient because small maneuvers by two UAS with conflicting flight paths could be 

more energy efficient than one of the UAS performing an extreme maneuver. However, 

the coordination of commands becomes exponentially more difficult as the number of 

UAS increases. The following table, Table 3-3, shows what combinations of cooperative 

and coordinated CA are used in this application. 
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Table 3-3:  Cooperation/Coordination Matrix 

Information 
Avoidance Commands 

Uncoordinated Coordinated 

Non-Cooperative Horizontal, Vertical  

Cooperative Horizontal Vertical 

 

Uncoordinated maneuvers are the only option with non-cooperative traffic, and 

are required by UAS with onboard sensing and processing of external threats. A 

cooperative group of UAS can be guided by uncoordinated or coordinated commands. 

The proportional navigation guidance coupled with the collision cone approach addresses 

the direction and magnitude of commands; however, conflicting commands are possible 

for certain encounter geometries. For level, co-altitude flight encounters, flight path 

commands tend to be the same sign. However, logically, one would want the aircraft to 

move in opposite directions even if the horizontal commands maintain lateral separation. 

Thus, the vertical commands can be coordinated in an encounter to direct one aircraft to 

climb and the other to descend while allowing the horizontal avoidance to operate 

uncoordinated. Only when the difference in angular heading of approaching aircraft is 

approaching zero, nearly parallel converging trajectories, do the horizontal guidance 

commands have difficulty deconflicting the aircraft. In these extreme cases, the 

coordinated vertical guidance provides the primary separation commands. When three or 

four aircraft are in a collision encounter, a pair or pairs of aircraft will tend to maneuver 

in the same vertical direction. These pairs will rely on horizontal guidance commands to 

achieve separation. Any more than four aircraft will require more sophisticated command 
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coordination than what is discussed here, such as optimization techniques to reduce 

conflicting maneuvers.  

3. Hardware 

The UAS chosen for the CA algorithm integration is the AFIT ANT laboratory’s 

Battlefield Air Targeting Camera Autonomous Micro-air vehicle (BATCAM). BATCAM 

is a miniature unmanned aircraft manufactured by Applied Research Associates, Inc., and 

is used by the United States Special Operations Command (SOCOM) for surveillance and 

reconnaissance missions.  

 
Figure 3-7:  BATCAM 

BATCAM, shown in Figure 3-7, is categorized by the 2007-2032 UAS roadmap 

as a “Tactical 1 Special Operations Forces Team Small Unit Company and below” 

system that is a small, hand-launched, platform with electro-optical/infrared (EO/IR) 

sensors or communication equipment as the primary payload [1]. BATCAM is also 

classified by the roadmap as a Level 0 domestic-use UAS which is described as a system 

under two pounds within line of sight control that operates in unregulated airspace. The 
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utility of the BATCAM system is outlined in a presentation by then Deputy Assistant 

Secretary of the Air Force for Science, Technology, and Engineering James Engle to the 

Senate Armed Services Committee, Subcommittee on Emerging Threats and Capabilities 

[31]. Mr. Engle says of the BATCAM in its role in the Battlefield Air Operations (BAO) 

kit, “BATCAM replaces the current UAV system in the BAO kit with one that is five 

times smaller and ten times lighter, yet still provides covert reconnaissance, is simple to 

operate, inexpensive enough to be expendable, and can provide real-time battle damage 

assessment.” Table 3-4 lists the key characteristics of the BATCAM platform. 

Table 3-4:  BATCAM Platform/System Characteristics [32] 

 BATCAM 
Manufacturer ARA 
User Service SOCOM 
Weight 0.84 lb 
Length 24 in 
Wingspan 21 in 
Payload Capacity 0.09 lb 
Engine Type Battery 
Ceiling 11,000 ft [33] 
Radius 1.6 nm 
Endurance 18 min 
Number Planned 23 systems 
Number 
UA/System 

2 

   

The EO/IR sensor system on the BATCAM consists of two cameras: one mounted 

forward-looking and the other mounted side-looking. The two camera angles provide a 

powerful surveillance/reconnaissance capability allowing forward views in straight-level 

flight and side views for single-point monitoring and loitering. For a route surveillance 

mission, long stretches of road can be viewed by a human operator or autonomous target 
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recognition (ATR) user, and single points of interest can be monitored for the endurance 

of the platform. 

An important component of the BATCAM system is the autopilot onboard which 

is responsible for autonomously operating the aircraft, receiving and responding to 

commands from the human controller, and relaying information back to the controller. 

The autopilot used in the ANT laboratory’s BATCAM systems is the Kestrel Autopilot 

System from Procerus Technologies [34]. The Kestrel autopilot is designed for miniature 

and micro aerial vehicles.  

 
Figure 3-8:  Kestrel Autopilot [34] 

The Kestrel Autopilot (see Figure 3-8) provides autonomous flight, takeoff, and 

landing capability via tunable control laws and Global Positioning System (GPS) 

navigation. The system is complete with wireless communication equipment for 

uploading/downloading of information to/from an integrated GCS which will be 

described in detail shortly. The autopilot includes a full sensor suite containing three-axis 
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accelerometers and gyros for acceleration, attitude and rate information, and a pitot-static 

system for pressure measurements and calculations. A communication box ground 

component is the interface between the GCS (installed on a laptop) and the Kestrel 

autopilot. The Kestrel Autopilot also allows manual control via a radio control (R/C) 

device. Combined with the live and recordable telemetry capabilities of the autopilot, and 

an experienced R/C pilot, this system is well-suited for developmental and operational 

flight tests from safety and technical standpoints.  

 
Figure 3-9:  Virtual Cockpit 

The GCS component of the Kestrel Autopilot system is the Virtual Cockpit 

Windows-based software system installed on a compatible laptop. Virtual Cockpit, 

shown in Figure 3-9, enables multiple vehicle UAS monitoring and control, and most 
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importantly, an external interface for user-developed algorithms. The GCS displays 

spatial information of all UAS in a flight plan and map display window, as well as 

attitude information in a heads-up-display (HUD) virtual window. Communication 

information is displayed for each UAS, and real-time status alerts are provided to the user 

with voice announcements. Virtual Cockpit provides in-flight autopilot tuning 

capabilities via graphical variable interfaces, and in-flight mode switching between 

navigation, manual, altitude, etc., modes.  

Table 3-5:  Collision Avoidance Algorithm Function Descriptions 

Function Name Description 
mult_uas_aa Performs parsing of cooperative and non-cooperative UAS 

inputs. Performs calculations and organizational tasks for 
collision cone avoidance algorithm inputs. Calls collision 
avoidance algorithm. Processes avoidance algorithm outputs and 
retains persistent variables for next algorithm call. Completes 
coordination of commands, as necessary. Calculates Kestrel 
Autopilot commands from avoidance algorithm commands.  

cc_pn_aa Performs calculations for collision cone approach algorithm. 
Uncouples horizontal and vertical collision cone planes. Calls 
collision cone algorithm for each threat object/obstacle for 
horizontal and vertical planes. Processes normalized collision 
cone approach outputs to absolute representation. Aggregates 
collision cones based on existing overlap. Determines cone 
violation via velocity vector comparison. If conflict exists, 
determines cone angle and rate to use in guidance. Applies 
proportional navigation guidance to both planes to generate 
avoidance commands. Retains flags for use in next function call. 

f_collisioncone4 Collision cone approach implementation function. Calculates 
collision cone bound angles and angular rates between own-ship 
and intruder. 

wrap_mpi2pi Wraps angles from minus pi to pi 
wrap_pos Wraps angles to positive values 
wrap_neg Wraps angles to negative values 
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4. Implementation 

CA algorithm development is completed in the MATLAB environment because 

of the author’s familiarity with the application, the ANT laboratory’s organizational 

preference for its use, its flexibility for algorithm design and testing, and its built-in 

portability to programming languages such as C and C++. The CA algorithm developed 

in MATLAB code (m-code) is executed in the MATLAB environment and tested in ideal 

simulations containing three degree-of-freedom dynamics and perfect tracking of 

commands. The algorithm consists of six MATLAB functions in separate m-files. Table 

3-5 gives descriptions of these functions and Appendix H contains full listings of the 

MATLAB code. 

4.1. MATLAB Algorithm Deployment 

Implementation of the collision avoidance algorithm into external applications 

requires auto-coding of the algorithm into a C shared library and supporting files with 

MATLAB’s Compiler application. The compiler allows many user options; the 

configuration chosen for this algorithm generates the necessary file types in Table 3-

6. 

Table 3-6:  Necessary MATLAB Compiler Generated Files 

File Type File Extension 
Dynamic link library *.dll 
Static library *.lib 
Header file *.h 
CTF file  *.ctf 
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Additional C files are generated, but are not necessary. The following commands at 

the MATLAB prompt will auto-code the collision avoidance algorithm and return the 

files listed in Table 3-6. 

mcc –W lib:CCAA –T link:lib mult_uas_aa cc_pn_aa f_collisioncone4 wrap_mpi2pi 

wrap_pos wrap_neg   

The names of the files are specified by the lib:CCAA option. This will name all 

associated files with different extensions CCAA.xxx, where xxx represents one of the 

extensions in Table 3-6.  

4.2. C++ Application and GUI Development 

Once the necessary compiler-generated files are available, the collision 

avoidance algorithm can be deployed to an external application. The Kestrel 

Developer’s Kit, an add-on package available from Procerus Technologies, is the 

interface to Virtual Cockpit and the Kestrel Autopilot necessary for user-developed 

applications to communicate with the aircraft. The CA algorithm is integrated with 

the GCS using this Kit and MATLAB Compiler Runtime (MCR), an application that 

must be distributed with a MATLAB Compiler-created application. The CA 

algorithm is linked to Virtual Cockpit through library functions and interfaces in the 

Developer’s Kit. A graphical user interface (GUI) and associated C++ functions were 

developed and written to process information from Virtual Cockpit for input to the 

CA algorithm and to process commands from the algorithm and send to the 

autopilots. Functions contained in the MCR are necessary to create the input and 

output structure required by the collision avoidance algorithm shared library. Figure 
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3-10 is the GUI for UAS collision avoidance monitoring and defining user 

parameters, in addition to other unrelated developmental testing windows.  

 
Figure 3-10:  Collision Avoidance Application GUI 

The collision avoidance GUI displays its Virtual Cockpit status information in the 

title bar. The lower right quadrant of the GUI is the collision avoidance display and 

configuration area (CADC). All other displays are for additional variable monitoring. 

The CADC display matrix shows the user which agents (i.e. UAS) are being 

processed by the algorithm and are identified by their Agent ID number. Currently, 

the GUI is compatible with up to four UAS platforms. This corresponds with current 

operational mission configurations that use four UAS. The next row in the matrix is a 
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binary flag informing the user whether the respective UAS has a conflict. If a conflict 

exists, the flag is a one, and the guidance commands from the algorithm appear in the 

remaining matrix locations. Under the agent matrix are user-defined parameter 

controls. Default settings appear when the GUI is initiated, but can be changed at 

runtime by the user and sent to the algorithm by pressing the appropriate button. The 

user-defined variables are described in Table 3-7. 

Table 3-7:  User Parameters, CA GUI 

Parameter Description Default Value Units 
Range Maximum range to begin 

executing collision avoidance 
algorithm 

400 m 

Lateral  Lateral minimum separation 
distance 

30 m 

Vertical Vertical minimum separation 
distance (altitude offset) 

10 m 

 

The default values were defined iteratively by running several simulations. 

The default maximum range value allows ample time for the aircraft to align 

themselves for collision encounters while still challenging the algorithm to provide 

sufficient avoidance commands. This is a function of typical speeds for the aircraft, 

and would need to be changed for other platforms. The default separation values were 

selected to account for uncertainty in aircraft trajectories. They are large enough so 

that CA will still be activated even if the aircraft are not precisely flying the desired 

path. The separation values are a function of typical aircraft speeds and accuracy in 

maintaining desired trajectories and would need to be changed for other aircraft.  
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There exists a tradeoff when integrating this CA algorithm into different UAS 

platforms. At large ranges relative to the size and speed of a particular aircraft, more 

uncertainty exists when determining if the aircraft are on a collision course because of 

noisy measurements and the possibility of maneuvers. This uncertainty can be 

reduced by waiting until the aircraft are closer together before commanding CA 

maneuvers. The tradeoff exists between reducing the CA range and the maneuver 

capability of the aircraft. A sufficient amount of range and synonymously time must 

be available for the aircraft to maintain separation. Too little range will increase the 

possibility of violating minimum separation. Too much range increases the false 

alarm rate.  

Novel methods of processing UAS information from multiple platforms and 

organizing the data for use in the CA algorithm are developed. First, it is necessary to 

understand how information is received and sent to Virtual Cockpit and the 

autopilots. Data packets are wirelessly transmitted between Virtual Cockpit and the 

Kestrel Autopilot. Many types of packets are defined by Procerus and each type 

contains different data. Therefore, for a particular algorithm, the proper packets that 

contain data required by the algorithm must be identified and received by the 

application. For the CA algorithm, two specific packets are required for proper 

operation, and one particular packet is optional. The packets are also specific to a 

single platform and contain only its information. Communication between the C++ 

CA application is configured so packet information is passed directly from Virtual 

Cockpit to the algorithm for processing. Consequently, packets received by the 
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application must be sorted for the proper packet type and sorted for their respective 

platforms. Platforms are identified in Virtual Cockpit by an Agent ID number. The 

processing scheme for packet data identifies any Agent ID number and determines 

whether or not a packet has been received from that platform. If not, it is a newly 

recognized platform and is added to a persistent list of IDs. A flow diagram of this 

portion of the algorithm is shown in Figure 3-11. 

 
Figure 3-11:  Agent ID Processing 
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Next, the particular packet type is recorded and appropriate data is accessed in 

that packet. Recorded algorithm input data is updated using the new packet data. 

Another persistent list is maintained by the processing scheme; it is a list of the 

packet types that have been received for a particular platform. This is done so the 

application tracks whether each platform has the minimum amount of information to 

execute the CA algorithm. If so, the platform is said to be “full-state”. 

The CA algorithm accepts state data for any number of UAS. However, due to 

communication limitations, only a single packet for a single UAS is collected at each 

measurement epoch. Thus, a particular set of UAS state data is added to the input 

arrays sent to the algorithm if and only if there is full state data for that UAS. That is, 

the two required packets for that UAS have been received and its respective input 

array elements have been populated. Regardless of whether the current packet 

information is used at that particular epoch, the data is used to populate the 

appropriate array element and saved for the next epoch. If full state data does not 

exist for any detected UAS or exists for only one UAS, then the CA algorithm is not 

executed. 

As eluded to previously in this section, packet information is sorted according 

to new and existing Agent IDs, and UAS state information is added to the input arrays 

as they achieve full state information. Hence, the input and output arrays to and from 

the CA algorithm are dynamically sized at runtime. This is facilitated by MCR library 

functions that perform all memory allocation tasks automatically and appropriate 

array sizing in the MATLAB code before compiling.  
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4.3. Collision Avoidance Algorithm/Autopilot Interface 

In Section 4.2, the direct pass-through of the packet information from the 

autopilot, through Virtual Cockpit, and finally to the collision avoidance C++ 

application is discussed. Also, extraction of UAS state information from the packet 

data is mentioned. The packets are structured so specific data always resides in a 

packet location. Specific state variables can therefore be withdrawn from the packet 

in short order. Procerus Technologies provides detailed information on the packet 

structure of the Kestrel Autopilot system in its Communications Documentation. A 

detailed interface description specific to this CA algorithm is provided in Appendix 

A. This description provides packet locations of required UAS states for the CA 

algorithm, as well as a thorough description of the variables themselves.  

 
Figure 3-12:  Collision Avoidance Command Processing 
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A similar process to extracting information from received Kestrel Autopilot 

packets is used to populate transmittable packets with guidance command information 

from the CA algorithm, if necessary. Figure 3-12 shows a flow diagram of the 

guidance command processing. This diagram is initiated with new packet processing, 

described above, that is an extremely non-trivial process.  

The CA algorithm is executed and returns binary flags to denote conflicts: 

zero for no conflict and one for at least one conflict. Conflict flags are returned for 

each UAS. If a conflict exists, then it is determined whether this is a new conflict or 

an existing conflict. If new, the UAS is switched to MANUAL mode, and the 

guidance commands provided by the CA algorithm are sent to the UAS. The mode 

switch is controlled by a callback function that populates the proper Kestrel autopilot 

packet with the mode identifier and instructs Virtual Cockpit to transmit the packet to 

the UAS autopilot. The command transmission is also facilitated by callback 

functions that populate the proper transmission packet with the command in the 

appropriate packet location. As with the mode switch, Virtual Cockpit transmits this 

packet directly to the UAS autopilot. If the current conflict is an existing conflict, 

then the UAS is already in MANUAL mode, and only commands are transmitted. If 

no conflict exists, but one did exist for that UAS at the last measurement epoch, then 

the UAS is switched back to NAV mode. If no conflict existed in the last epoch or 

exists in the current epoch, then the collision detection algorithm continues to collect 

new packets and monitors the airspace without issuing commands. 
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IV. Analysis and Results 

1. Chapter Overview 

Chapter IV discusses the tests performed on the CA algorithm and the pertinent 

results obtained from each type of test. Simulation results are discussed in sequential 

order from the least complexity and uncertainty to the greatest. Simulations include ideal 

simulations performed in MATLAB, SIL simulations performed in Virtual Cockpit and 

Aviones, an aerial vehicle simulator, and finally, HIL simulations performed with Virtual 

Cockpit, Aviones, and the Kestrel Autopilot. Testing is concluded with flight tests 

performed with BATCAMs, Virtual Cockpit, and all other required hardware.  

Each test is conducted with the same scenario sets. The sets are test cases that 

describe particular encounter geometries. A full spectrum of cases is used to evaluate the 

robustness of the algorithm. In flight test, the UAS was placed in collision encounters that 

included altitude separation for safety purposes. The minimum separation volume was 

defined large enough in flight test to activate collision avoidance even though a near-mid-

air close-encounter relative to the size of the aircraft did not occur. Scenarios consist of a 

span of engagement angles (i.e. the angles at which the nominal trajectories of two 

aircraft meet). Opposing trajectories, 180° engagement angle, are called Head-on 

encounters. Trajectories with less than 180° and greater than 90° engagement angles are 

called Approaching encounters. A 90° engagement angle is an Abeam encounter. And 

finally, an engagement angle of less than 90° is a Converging encounter. Figure 4-1 

depicts these encounters visually. 
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Figure 4-1:  Test Case Geometries 

Virtual Cockpit’s standard telemetry recording feature was utilized for all testing. 

The recorded telemetry in flight test is data transmitted from the autopilot down to the 

GCS. This data gives a clear indication of commands and responses as reported by the 

autopilot, but is bounded by the rate of transmission. No communications between the 

CA algorithm and Virtual Cockpit are recorded because this data would be uncorrelated 

in time with actual packets received by the autopilot.  
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2. Simulation Results 

2.1. Ideal 

Ideal simulations were performed for a two-ship encounter at each of the 

engagement geometries discussed above. Three degree-of-freedom dynamics with 

perfect tracking of commands is assumed. The CA commands essentially control the 

magnitude and direction of the velocity vector of the aircraft. Reference [28] proves 

that the guidance law converges for a proportional gain greater than one. For 

simplicity, the gain was set to the next positive integer value satisfying the 

convergence property. Hence, the guidance law proportional gain was set to two for 

all subsequent tests.  

 
Figure 4-2:  Ideal Head-on Simulation Trajectories 
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The results for the head-on encounter are shown in Figure 4-2. The closest 

point of approach is denoted as CPA and is shown in the figure as stars on each of the 

trajectories. Dashed circles represent the horizontal minimum separation at CPA. 

CPA representations are the same for all subsequent top-view figures for all 

encounters. The two UAS are initialized on coincident trajectories and flying in 

opposite directions at a nominal speed of 14 m/sec. This nominal trajectory is shown 

in the figure as a dashed black line. The UAS begin their maneuvers after the 

minimum CA range, 400 m, is reached. 400 m is the default value discussed in 

Chapter III. Avoidance commands last approximately 2.5 sec, 4 to 6.5 sec in the 

simulation, and CPA occurs at 19.5 sec into the simulation. The maneuvers follow the 

commands shown in Figure 4-3 generated by the proportional navigation guidance.  

 
Figure 4-3:  Ideal Head-on Simulation Avoidance Algorithm Commands 
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Attention should be paid to the intuitiveness of the commands generated by 

the CA guidance. The turn rate commands, as expected, are symmetric and have the 

same sign because each aircraft’s approach to the collision point is a mirror image of 

the other. The coordinated flight path rate commands are opposite in sign, but not 

symmetric. This is due to the cone bounds used in the guidance for a particular UAS 

are rotating at different rates as the aircraft climb and dive in relation to each other. 

The translational acceleration commands are the remaining components of the 

proportional navigation acceleration command ensuring it is perpendicular to the 

appropriate cone bound. It is clear that the UAS are within CA range at 

approximately four seconds into the simulation. 

The ideal algorithm commands must be transformed for compatibility with the 

Kestrel autopilot. The transformed commands are also calculated in the ideal 

simulations. These commands for the head-on case are shown in Figure 4-4. The 

Kestrel autopilot commands are speed (V), integrated from the translational 

acceleration command, turn rate (dψ/dt), which is the negative of the rate of change of 

alpha, and pitch angle (θ), which is assumed to equal flight path angle, and is 

integrated from flight path rate. 

The aircraft slant range is plotted with the minimum CA range and the 

minimum separation distance in Figure 4-5. The avoidance maneuver commands start 

at approximately four seconds into the simulation. This corresponds to the maximum 

range allowed for CA (400 m). Also, CPA corresponds to near-tangency of the range 

curve to the minimum limit at 19.5 sec.  
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Figure 4-4:  Ideal Head-on Simulation Kestrel Autopilot Commands 

 
Figure 4-5:  Ideal Head-on Simulation Range 
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The altitude of each aircraft is shown in Figure 4-6 along with the vertical 

separation, VO (Vertical Offset), dashed lines. It is clear in Figure 4-2 that the aircraft 

maintain horizontal separation but are also vertically separated now by almost eight 

meters. This is because both horizontal and vertical channels continue commanding 

until one achieves its perceived minimum separation. The separation is perceived 

because the aircraft may not follow their nominal trajectory after the avoidance 

maneuvers due to navigation commands or other obstacles to avoid. Figures for the 

other two-ship encounters, Approaching, Abeam, and Converging, are in Appendix 

C.  

 
Figure 4-6:  Ideal Head-on Simulation Altitude 
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avoid both of the other UAS approaching the point. Without coordination of 

commands in the horizontal plane, the geometry of the encounter and the guidance 

equations command coherent maneuvers reflecting the symmetry of the encounter. 

Figure 4-7 shows the trajectories of this three-ship encounter.  

 
Figure 4-7:  Ideal Three-Ship Simulation Trajectories 
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Figure 4-8:  Ideal Three-Ship Simulation Avoidance Algorithm Commands 

 
Figure 4-9:  Ideal Three-Ship Simulation Kestrel Commands 
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Distinct ranges (see Figure 4-10) between UAS are shown as ‘R 1-2’, range between 

UAS 1 and UAS 2, ‘R 1-3’, range between UAS 1 and UAS 3, and ‘R 2-3’, range 

between UAS 2 and UAS 3. All UAS maintain lateral separation with each other and 

each encounter is temporally symmetric.  

 
Figure 4-10:  Ideal Three-Ship Simulation Range 

 
Figure 4-11:  Ideal Three-Ship Simulation Altitude 

10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

450

500

t, s

R
an

ge
, m

 

 

R 1-2
R 1-3
R 2-3
CA Max
Min Lat Sep

0 10 20 30 40 50 60 70
70

80

90

100

110

120

130

t, s

A
lti

tu
de

, m

 

 

UAS1
UAS2
UAS3
VO



 

63 

Altitude (see Figure 4-11) displays the same pattern as the two-ship 

encounters except for one important feature. Now that there are three UAS, two will 

adjust their flight path in the same vertical direction. The burden of maintaining 

separation for these two aircraft is now solely placed on the horizontal maneuvers 

which were successful. 

2.2. Software-in-the-Loop 

SIL simulations were configured and executed on a single laptop in Virtual 

Cockpit’s loop-back mode. Aviones was configured so that it used its default aircraft 

dynamics model and was started first. Once Aviones is running, Virtual Cockpit can 

be opened and Agents can be added with distinct Agent IDs and set to operate in SIL 

mode. Once added, these UAS and their respective Agent IDs appear in Aviones. The 

Aviones graphics screen appears as in Figure 4-12. 

 
Figure 4-12:  Aviones with Agents 
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Virtual Cockpit’s GUI is designed for interactive mission set-up, both before 

UAS launch and after. Waypoints are added to a particular scenario so that the 

encounter will be at the appropriate engagement angle for each test case. This does 

not, unfortunately, guarantee that the UAS will always encounter each other in the 

desired geometry and location. Significant amounts of re-routing were necessary after 

waypoint following in navigation mode was initiated to align the aircraft properly. 

Aircraft dynamics and autopilot responses were the causes of configuring the 

encounters manually.  

Table 4-1:  Manual Mode Collision Avoidance Autopilot Settings 

Name Setting 
Level 1 Loops  

Roll  Checked 
Roll Rate Checked 
Pitch Checked 
Pitch Rate Checked 
Yaw Rate Unchecked 
Throttle “Airspeed” 

Level 2 Loops  
Pitch Dynamic Input “Fixed” 

 

Waypoint following is achieved in navigation (NAV) mode for all UAS. 

Collision avoidance operates in manual (MAN) mode when commanding maneuvers 

and returns control of the UAS back to NAV mode once the collision threat has been 

abated. Modes were configured in Virtual Cockpit for each control loop in the 

autopilot. For instance, in MAN mode, a user can select the pitch loop to control 

either airspeed or altitude. These settings must be configured appropriately for all 

UAS autopilots to obey CA commands properly. The MAN mode configuration for 
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CA in SIL will also apply to HIL and flight test operations. Proper CA MAN settings 

are shown in Table 4-1. 

To access these settings in Virtual Cockpit, follow the path below starting at 

the main window menu ‘Settings->Autopilot Config’. The ‘Global Settings’ window 

will appear and will reflect the currently selected Agent autopilot. The following 

steps must be completed for each autopilot.  

1) Expand Mode Configuration 

2) Expand Manual Mode 

3) Expand both PID Loops lists (Level 1 and Level 2 Loops) 

4) Set variables according to Table 4-1 

5) Press Upload Config 

6) Press Update Flash 

7) Repeat Steps 1-6 for each UAS 

The MAN mode autopilot settings for CA ensure that the autopilot control 

loops do not generate conflicting commands. The Level 2 loop setting ensures the 

aircraft will follow the CA Kestrel pitch command. Level 1 loop settings ensure that 

the throttle controls airspeed in accordance with the CA Kestrel airspeed command. A 

combination of the other Level 1 loops controls turn rate according to the CA Kestrel 

turn rate command.   

Once Aviones and Virtual Cockpit are initialized and properly configured, the 

aircraft are launched. It takes combinations of active waypoint switching and timing 

to get them out of phase by 180 deg. Once they are in opposing route locations, the 
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CA GUI is executed and the CA algorithm immediately begins communicating with 

virtual cockpit, receiving packets, and monitoring the UAS. The GUI is monitored as 

the UAS cross the 400 m range limit, as the CA algorithm detects the collision, and as 

it switches the UAS to MAN mode from NAV mode. Immediately after the switch, 

commands populate the Agent matrix in the CA GUI. Mode switches are visually 

distinguishable in Virtual Cockpit because the current mode button is highlighted in 

green and all others are grey. 

 
Figure 4-13:  SIL Head-on Simulation Trajectories 
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commanded to fly back and forth between the same waypoints and along the same 

path, but 180 deg out of phase. This pattern will result in a collision encounter at the 

center point along the route. The waypoints are spaced enough to allow the aircraft to 

align themselves along the straight route after their turn around the waypoint. The 

maximum CA range and separation volumes are identical to those in the ideal 

simulations. Figure 4-13 shows the resultant trajectories for the SIL Head-on test 

case. The UAS successfully maintained lateral separation and obeyed the CA 

commands.  

 
Figure 4-14:  SIL Head-on Simulation Airspeed Response 
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Commands are initiated when the mode is switched at 232.17 sec into the simulation, 

and CPA occurs at 242.05 sec. Using collision timelines like this (10 sec elapsed from 

detection to CPA), CA algorithms can be tailored to particular aircraft and particular 

encounter situations in future research. 

 
Figure 4-15:  SIL Head-on Simulation Turn Rate Response1
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1 ‘Des’ signal not recorded and is all zeroes 
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this particular aircraft model. In flight test, PID settings must be tuned for each 

aircraft separately.  

 
Figure 4-16:  SIL Head-on Simulation Pitch Response 
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that this is actually another steady-state error. The effect of pitch response can clearly 

be seen in the altitude plot and altitude separation is minimal at the end of the 

collision encounter. 

 
Figure 4-17:  SIL Head-on Simulation Range 
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caused UAS 1 to be above UAS 2 at CPA (242.05 sec) even though UAS 1 was 

commanded to pitch down and UAS 2 was commanded to pitch up. These 

uncertainties are inevitable, and must be taken into account by the robustness of the 

algorithm (i.e. multiple dimensions for separation and sufficiently large separation 

volume definitions).  

 
Figure 4-18:  SIL Head-on Simulation Altitude 
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repercussions are increased collision likelihood because of delayed responses and 

poor mission performance because of large deviations from the nominal trajectory. 

This is a system-dependent issue that is not an indication of the CA algorithm’s 

performance. Fortunately, the Mode switch from MAN to NAV at the beginning of 

the encounter happens immediately, and commands are received by the autopilots that 

successfully deconflict the aircraft.  

Table 4-2:  SIL Simulation Results, Key Statistics 

Parameter 

Value 

Head-on Approach Abeam Converge 

Time of Minimum Lateral Separation 242.05 s 462.44 s 121.15 s 153.47 s 

Minimum Lateral Separation 37.5 m 49.26 s 45.18 m 35.41 m 

Time of Minimum Slant Range 242.05 s 462.44 s 121.15 s 152.67 s 

Minimum Slant Range 35.83 m 49.69 m 45.73 m 37.05 m 

UAS1 Alt at Tmin,LS 307 m 304 m 297.33 m 306 m 

UAS2 Alt at Tmin,LS 304.5 m 297.17 m 304.17 m 293.83 m 

UAS1 Alt at Tmin,SR 307 m 304 m 297.33 m 305.33 m 

UAS2 Alt at Tmin,SR 304.5 m 297.17 m 304.17 m 295 m 

 

Figures for the other two-ship encounters, Approaching, Abeam, and 

Converging, are in Appendix D. Key statistics of each two-ship encounter are shown 

in Table 4-2. Lateral separation was achieved in each test case. Although altitude 

separation was not necessary due to the lateral separation, the converging case did 
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achieve full vertical separation. For the other cases, pitch changes were commanded 

by the CA system but the dynamic lag between pitch changes and altitude changes 

was too slow. Airspeed commands frequently exhibited oscillating patterns, but it is 

assessed that these are caused by autopilot attempts to overwrite the CA command. If 

this was caused by the avoidance algorithm, either the turn rate or pitch command and 

response would exhibit the same type of pattern, because each of the three 

independent commands are components of a single change in the velocity vector 

command. The autopilot may overwrite commands depending on control loop 

settings beyond what a user can adjust (see Table 4-1).  

A three-ship encounter was tested in SIL for an encounter identical to the 

ideal three-ship simulation. All three UAS have even angular spacing and are 

intended to collide near the origin of the local reference frame. Uncertainties, such as 

aircraft dynamics, autopilot command tracking, and communication delays, will 

inevitably cause differences in the responses, but it is important to demonstrate 

functional determinism (the ability to repeat results within bounds given uncertainty 

in the system). By quantitatively repeating ideal response patterns in the SIL 

simulations within some margin of error, one can transition to higher levels of 

complexity with confidence.  

Figure 4-19 shows the results of the three-ship SIL simulation. Results are 

very similar to ideal simulations, except for UAS 3 turning in the opposite direction. 

This is caused by non-ideal geometry and dynamics-effects at the beginning of the 

encounter. The discrepant turn direction does not negatively affect the outcome of the 
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encounter, and all aircraft avoid each other in a similar manner to the ideal 

simulations.  

 
Figure 4-19:  SIL Three-Ship Simulation Trajectories 

 
Figure 4-20:  SIL Three-Ship Simulation Trajectories, Zoomed to Origin 
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Figure 4-20 is a close-up view of the locations of the CPA. The lateral 

minimum separation areas are distinguishable by two factors. The line color of each 

circle coincides with the color of each UAS’s trajectory. The line type represents each 

distinct CPA for each UAS combination. For instance, CPA between UAS 1 to 2 is 

identical to CPA between UAS 2 to 1, and only one is shown. Key parameters of the 

encounter are shown in Table 4-3. 

Table 4-3:  SIL Three-ship Simulation Results, Key Statistics 

Parameter 

Value 

1-2 (2-1) 1-3 (3-1) 2-3 (3-2)2 

Time of Minimum Lateral Separation 176.18 s 176.16 s 187.46 s 

Minimum Lateral Separation 44.37 m 32.84 m 20.59 m 

Time of Minimum Slant Range 176.18 s 176.16 s 187.46 s 

Minimum Slant Range 44.54 m 34.09 m 22.03 m 

UAS1 Alt at Tmin,LS 308.17 m 307.83 m  

UAS2 Alt at Tmin,LS 304 m  304.83 m 

UAS3 Alt at Tmin,LS  299.33 m 298.33 m 

UAS1 Alt at Tmin,SR 308.17 m 307.83 m  

UAS2 Alt at Tmin,SR 304 m  304.83 m 

UAS3 Alt at Tmin,SR  299.33 m 298.33 m 

                                                 
2 Vertical separation was likely achieved, but not shown in data because of irregular measurements. Refer 
to discussion following chart for further information.  
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Unlike the ideal simulations where separation was maintained for every 

encounter, UAS 2 and 3 violate their lateral minimum separation criteria. This is due 

to communication delays causing avoidance commands to be executed seconds after 

they are generated by the avoidance algorithm. Although they do not maintain the 30 

m separation, the UAS are still separated laterally by over 20 m, and are reported to 

have 6.5 m of altitude separation. Thus, uncertainties have caused suspected loss of 

separation even in SIL simulations. Furthermore, measurement uncertainty can skew 

the results because measurements are taken at discrete time intervals and must be 

sufficiently small to recreate the close-encounter spatially and temporally. Thirty 

meters was used as the minimum lateral separation for subsequent tests, but further 

studies in the future should concentrate on defining separation volumes with 

statistical encounter descriptions from Monte Carlo simulations.  

The guidance commands are shown in Figures 4-21 through 4-23. Airspeed 

commands exhibit the same steady-state error as in the two-ship simulations. Turn 

rate commands are acceptable in pattern and magnitude, but because of the deficiency 

in Virtual Cockpit data recording, a definitive comparison of command tracking 

cannot be made. The pitch commands have poor tracking which causes difficulty in 

maintaining altitude separation at the CPA.  
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Figure 4-21:  SIL Three-Ship Simulation Airspeed Avoidance Command 

 
Figure 4-22:  SIL Three-Ship Simulation Turn Rate Avoidance Command 
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Figure 4-23:  SIL Three-Ship Simulation Pitch Avoidance Command 
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Figure 4-24:  SIL Three-Ship Simulation Range 

 
Figure 4-25:  SIL Three-Ship Simulation Altitude 
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2.3. Hardware-in-the-Loop 

Hardware-in-the-loop (HIL) tests required significantly more test preparation 

than SIL tests. The autopilots were configured as though they were on an actual 

aircraft. They are battery powered with an antenna attached for wireless 

communication with the communication box (COMM BOX). The difference between 

actual operation and HIL is that the autopilots communicate with Aviones for 

simulated aircraft dynamics by configuring Aviones to communicate through USB 

communication ports and connecting the autopilots to these ports with adaptors. The 

COMM BOX is attached to the computer running Virtual Cockpit which is 

configured for autopilot operation in HIL mode and communicates with the COMM 

BOX.  

 
Figure 4-26:  Single UAS HIL Set-up 
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Figure 4-26 shows the HIL set-up for a single vehicle UAS. For a multiple 

vehicle UAS, which is the case for the CA testing, each autopilot must have its own 

computer, battery, antenna, and Aviones instantiation. The COMM BOX will 

communicate with each autopilot and transfer communications to and from Virtual 

Cockpit.  

Each autopilot is configured as in Table 4-1 and test cases are identical to 

those in SIL testing. Added complexity and uncertainty in HIL includes firmware and 

autopilot processing, battery power, and wireless communication. Communication 

between the CA application and the autopilot is now subject to wireless 

communication delays and dropouts in addition to independent firmware and 

autopilot processing instead of software-only processing on a single computer.  

 
Figure 4-27:  HIL Head-on Simulation Trajectories 
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Trajectories for the HIL head-on encounter are shown in Figure 4-27. It 

falsely appears in this horizontal plane view that the aircraft collide. However, in 

Figure 4-28, the altitude time-history shows that the aircraft achieved altitude 

separation at CPA and successfully avoided a collision.  

 
Figure 4-28:  HIL Head-on Simulation Altitude 
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the collision cone algorithm and guidance logic. This single encounter shows the 

importance of multi-dimensional commands in a geometric algorithm. 

 
Figure 4-29:  HIL Head-on Simulation Airspeed Avoidance Command 
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Figure 4-30:  HIL Head-on Simulation Turn Rate Avoidance Command 

 
Figure 4-31:  HIL Head-on Simulation Pitch Avoidance Command 
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In Figure 4-31, the aircraft pitch response to the avoidance commands 

contains a one to two degree steady-state error. The pitch commands from the CA 

algorithm for UAS 1 are positive and for UAS 2 are negative and should separate the 

aircraft. However, both responses are positive because the error is larger than the 

negative commands for UAS 2. This results in both aircraft climbing as seen in 

Figure 4-28 but at much different rates. This is an autopilot issue requiring PID gain 

tuning, but it did not cause loss of altitude separation. The airspeed command for 

UAS 2 remains at the nominal speed, but this is also an effect of autopilot 

configuration. The speed changes commanded by the CA algorithm are not large 

enough for interpretation by the autopilot.  

 
Figure 4-32:  HIL Head-on Simulation Range 
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The range plot, Figure 4-32, indicates loss of lateral separation, but roughly 

shows the smaller altitude separation. Figures for the other two-ship encounters, 

Approaching, Abeam, and Converging, are in Appendix E. Table 4-4 shows key 

statistics of each of the two-ship encounters. 

Table 4-4:  HIL Simulation Results, Key Statistics 

Parameter 

Value 

Head-on Approach Abeam Converge 

Time of Minimum Lateral Separation 223.47 s 584.83 s 608.36 s 189.2 s 

Minimum Lateral Separation 7.3 m 24.77 s 27.83 m 65.2 m 

Time of Minimum Slant Range 223.47 s 584.83 s 608.36 s 189.2 s 

Minimum Slant Range 13.54 m 27.01 m 31.85 m 66.26 m 

UAS1 Alt at Tmin,LS 317.33 m 316.83 m 315.67 m 300.67 m 

UAS2 Alt at Tmin,LS 306.5 m 306.33 m 299.67 m 308.00 m 

UAS1 Alt at Tmin,SR 317.33 m 316.83 m 315.67 m 300.67 m 

UAS2 Alt at Tmin,SR 306.5 m 306.33 m 299.67 m 308.00 m 

 

HIL two-ship simulations stressed the importance of minimum altitude 

separation by means of a pitch command. Only the Converging test case maintained 

the full lateral separation, though the Abeam and Approaching cases were over 20 m 

and also achieved altitude separation. Three of the cases also achieved their full 

altitude separation. The HIL results departed from the SIL results in separation trends, 

but are favorable in their own right and display successful CA. Communication 
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“buffer” delay issues, similar to those in SIL testing, caused delays in Mode 

switching back to NAV mode after CA was successful. 

 
Figure 4-33:  HIL Three-ship Simulation Trajectories 

A three-ship HIL test is completed and compared to the SIL test. Figure 4-33 

shows the resultant trajectories, and Figure 4-34 is a close-up view of the origin and 

the CPA locations. The CPA between distinct pairs of UAS is distinguished in the 

same manner used in SIL; color represents a particular UAS and line type denotes a 

distinct UAS pair. UAS 3 noticeably deviated from its nominal trajectory before the 

collision encounter and CA initiation. Its waypoint following, albeit poor, further 

challenged the CA algorithm because of the maneuvering.  
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Figure 4-34:  HIL Three-ship Simulation Trajectories, Zoomed to Origin 
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achieved more than the required altitude separation at CPA, UAS 1 and 3 also 
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UAS 2 and 3 achieved full lateral separation. Unfortunately, the separations cannot be 

fully attributed to CA commands. It will be seen in later figures that the Mode switch 

for CA for UAS 2 and 3 occurs after CPA. This is undoubtedly due to communication 

delays because commands are still issued after CPA, gleaning more evidence of a 

communication buffer that stores packets for transmission in a queue. 
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Table 4-5:  HIL Three-ship Simulation Results, Key Statistics 

Parameter 

Value 

1-2 (2-1) 1-3 (3-1) 2-3 (3-2) 

Time of Minimum Lateral Separation 874.09 s 872.01 s 872.01 s 

Minimum Lateral Separation 15.05 m 25.36 m 30.64 m 

Time of Minimum Slant Range 874.09 s 872.01 s 872.01 s 

Minimum Slant Range 22.46 m 30.35 m 30.66 m 

UAS1 Alt at Tmin,LS 317 m 316 m  

UAS2 Alt at Tmin,LS 300 m  300 m 

UAS3 Alt at Tmin,LS  299 m 299 m 

UAS1 Alt at Tmin,SR 317 m 316 m  

UAS2 Alt at Tmin,SR 300 m  300 m 

UAS3 Alt at Tmin,SR  299 m 299 m 

 

Although individual separation criteria were met, it is important to understand 

why some separation criteria in particular dimensions were not achieved. One glaring 

piece of evidence exists in the airspeed command, shown in Figure 4-35. It is unclear 

whether no airspeed commands actually were received by the autopilots, or whether 

they were too small to be interpreted by the autopilots, but no speed changes were 

commanded. They were unquestionably commanded by the CA algorithm because 

the other commands were processed by the autopilots. 
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Figure 4-35:  HIL Three-ship Simulation Airspeed Command 

Both combinations of failed lateral separation involved UAS 1. It can be seen 

in Figure 4-36 why this possibly happened. UAS 1 did not respond to or did not 

receive a turn rate command. Unfortunately, because turn rate commands cannot be 

recorded, it is impossible to tell which is the case. It is speculated that if UAS 1 had 

responded to a turn rate command, the UAS 1-2 and UAS 1-3 combinations would 

have achieved lateral separation because 1) UAS 2-3 successfully achieved lateral 

separation with their commands which also included separation considerations for 

UAS 1 (global approach), and 2) UAS 1 responded successfully to its vertical 

commands to achieve altitude separation.  
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Figure 4-36:  HIL Three-ship Simulation Turn Rate Avoidance Command 

 
Figure 4-37:  HIL Three-ship Simulation Pitch Avoidance Command 
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UAS 1 achieved altitude separation from both UAS 2 and 3 because it 

immediately received and responded to its pitch command (see Figure 4-37). UAS 2 

and 3 did not achieve altitude separation. This, again, is undoubtedly due to them 

receiving their pitch commands long after (estimated to be 10-20 sec) they were 

actually commanded. The steps in their commands after the Mode switch are 

uncharacteristic of the guidance commands processed by the avoidance algorithm. 

They should be smooth and continuous as seen in the UAS 1 command. The 

command steps are more evidence of communication problems, seemingly due to a 

communication “bottle-neck” that transmits commands sporadically.  

Figure 4-38 and Figure 4-39 show the HIL three-ship range and altitude, 

respectively. The late Mode switches for UAS 2 and 3 are apparent in the range plot. 

UAS 1 altitude separation is evident in the altitude figure. It is curious that UAS 1 

receives and responds to its Mode switch pitch command immediately, but does not 

receive or respond to its turn rate or altitude command. After further investigation, the 

order of command transmittals in the CA algorithm code is this: 1) mode switch, 2) 

airspeed, 3) pitch, 4) turn rate. The author makes the following hypothesis about these 

curious events. The mode switch happens immediately, and the airspeed command is 

transmitted, but is too small to be processed by the autopilot. The pitch command is 

then sent successfully. The turn rate command is added to the queue, along with 

commands for UAS 2 and 3, and the queue begins to build and delays subsequently 

accumulate. Further investigation into the workings of the Kestrel libraries and how 

command packets are transmitted may begin to shed light on these peculiarities.  
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Figure 4-38:  HIL Three-ship Simulation Range 

 
Figure 4-39:  HIL Three-ship Simulation Altitude 
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3. Flight Test Results 

Flight tests were flown at Camp Atterbury, Indiana, a military installation with 

restricted airspace enabling autonomous flight in controlled airspace. An entire ground 

unit including the GCS, test support, and repair equipment was used as the test operations 

center. The GCS is equipped with the same laptop used in HIL tests along with additional 

communication and video equipment used with the BATCAM systems. The GCS test 

operations area, located in the front of the ground unit, is shown in Figure 4-40 and a test 

aircraft, BATCAM 1, is shown in Figure 4-41.  

 
Figure 4-40:  Flight Test Ground Control Station 

Detailed flight test procedures, provided in Appendix G, were written and 

presented at AFIT to a safety and technical review board for test approval prior to launch. 

Safety considerations included the ballistic footprint of debris falling in the event of an 

actual collision. Emergency procedures were written specifically for CA testing in the 

case of unresponsive BATCAM aircraft under CA control. Safety precautions included 

50 ft altitude separation warranting a relatively over-sized minimum separation volume 
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and waypoint placements that resulted in a theoretical collision point separated from the 

GCS by three times the ballistic debris footprint.  

 
Figure 4-41:  AFIT's BATCAM 1 

Flight test procedures were written for two-ship and three ship encounters at the 

engagement angles used in SIL and HIL testing. Two-ship tests at two engagement angles 

were actually flown and will be reviewed in detail in later discussions. Wind conditions 

were a cause of changes to some of the flight test procedures. Waypoint patterns were 

constructed to produce the desired collision encounters in the test range area. These 

patterns were adjusted in orientation with respect to the Camp Atterbury runway to align 

the mean wind direction perpendicular to the flight paths in order to reduce discrepancies 

in ground speed. Also, for flight paths that could not be aligned perpendicular to the wind 

direction, speed adjustments were made in Navigation mode waypoint settings to account 

for head and tail winds. The Camp Atterbury runway and two-ship CA test waypoints are 

shown in Figure 4-42. Solid lines represent planned waypoints and dashed lines represent 
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actual test waypoints after, approximately, a 20 deg counter-clockwise adjustment for 

winds. The total range between waypoints was also reduced in order to ensure the 

BATCAMs were in-view throughout the entire test.  

 
Figure 4-42:  Two-Ship Flight Test Waypoints over Camp Atterbury 

The BATCAMs in each collision encounter were separated in altitude by 50 ft. 

This separation is included for two reasons: 1) safety, and 2) BATCAM altitude holding. 

In previous flight tests of the BATCAMs, they were found to hold altitude only within 

plus or minus 30 ft. To account for this, the vertical minimum separation in the algorithm 

was set to 20 m (~65 ft) for all tests. The lateral minimum separation was also increased 

to 60 m to excite the horizontal avoidance commands and flatten out the minimum 

separation cylinder. It was found during the flight tests that significant “weaving” 

occurred in navigation mode when transitioning to the line of sight between waypoints. 

This introduced additional uncertainty in the tests for collision detection and command 
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generation and was partially removed by changing cross-track settings in Virtual Cockpit 

for Navigation mode. Unfortunately, these oscillatory flight patterns were not alleviated 

entirely and are apparent in flight test data.  

3.1. Pre-flight Ground Testing 

Ground tests were completed prior to BATCAM launch to verify two issues 

that cannot be determined in HIL testing. Test personnel physically walked with 

BATCAMs in-hand towards each other as though they were actually flying and 

activated CA. In the first ground-test, an R/C Manual mode exists in the Kestrel 

system that provides radio control of the BATCAMs for a safety pilot through the 

COMM BOX to the Kestrel autopilot. To safely proceed with testing, it had to be 

shown that R/C mode could over-ride CA commands in the event the aircraft become 

unresponsive during collision encounters. This was verified in ground tests. The R/C 

mode is limited to control over only one aircraft at a time, and a switch to another 

aircraft is made in Virtual Cockpit. It was found that even though R/C control will 

supersede CA in Manual mode, Virtual Cockpit will not switch R/C control to 

another aircraft when communication blockages are present in the communication 

channels. This limitation presents additional risk to recovering unresponsive aircraft 

and was a major contributor to reducing the number of completed tests. A second 

ground test was completed to ensure the autonomous mode switching in the CA 

algorithm could complete the entire CA process with all flight test equipment 

activated. It was verified that CA can detect a collision, switch to Manual mode, issue 
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guidance commands, and return to Navigation mode autonomously with the entire 

flight test configuration.  

3.2. Flight Testing 

Two engagement angles were flown in the flight test, Head-on and 

Approaching. Multiple encounters per engagement angle, four for Head-on and two 

for Approaching, were flown and each one resulted in a positive collision detection 

and avoidance maneuver transmission. The remaining two-ship encounters and the 

three-ship encounter were not flown because of communication delay problems 

allegedly caused by a packet transmission buffer processing at a slower rate than 

command generation. This has yet to be substantiated. The last test and, ironically, 

the most successful in terms of collision avoidance data collection, resulted in both 

BATCAMs becoming unresponsive and emergency procedures were executed. Both 

aircraft were successfully recovered. The unresponsiveness is caused by a build-up of 

avoidance commands that are slowly processed even after the CA application is 

terminated. A newer version of the Kestrel autopilot is available with a faster 

processor, but the precise location of the delay in the communication system should 

be found before any equipment is acquired. 

The second Approaching encounter, and final test, resulted in the best 

encounter because of the geometric alignment at CA initiation, the aircrafts’ response 

to commands, and data quality. The trajectories for this encounter are shown in 

Figure 4-43 and the range between the aircraft is shown in Figure 4-44.  
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Figure 4-43:  Flight Test Approaching Encounter 2 Trajectories 

 
Figure 4-44:  Flight Test Approaching Encounter 2 Range 
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The mode switch to Manual mode for BATCAM 2 and BATCAM 1 CA was 

activated simultaneously at the maximum CA range as expected. The range at CPA 

for this encounter was approximately 47 m. The desired minimum separation of 60 m 

was not fully maintained, but appropriate avoidance maneuvers were commanded and 

did result in large separation distances in the presence of uncertainties. The mode 

switch and altitude are shown in Figure 4-45. It should be mentioned that even though 

the aircraft are supposed to be separated by 50 ft in altitude, it can clearly be seen that 

they hold altitude poorly in navigation mode and are nearly co-altitude at times.  

 
Figure 4-45:  Flight Test Approaching Encounter 2 Altitude 
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because of a decrease in angle of attack. The trim angle of attack was larger than the 

pitch command sent to the BATCAM. Despite the aircraft response, the algorithm 

was functioning properly and provided intuitive commands. As discussed in Chapter 

III, the interface between the CA algorithm and the Kestrel autopilot did not allow 

flight path angle commands and only offered orientation angle commands. A small 

angle of attack assumption and small dynamic delay between a pitch change and the 

resultant altitude change assumption were made for algorithm integration. The 

assumptions are shown to be inaccurate and will require changes in the algorithm 

interface to command different variables. The author has spoken with Procerus 

representatives, and climb rate commands are available in later versions of the Kestrel 

autopilot. Thus, integration improvements may be possible with updated equipment, 

although it is possible in newer versions the turn rate commands may have been 

removed. The pitch response is shown in Figure 4-46. 

After CA initiation for BATCAM 1, it is commanded to decrease altitude. It 

pitches down but has a large steady state error and maintains a positive pitch angle. 

As a result, BATCAM 1 sustains a large angle of attack and actually begins to climb. 

Both BATCAM 1 and 2 exhibited altitude responses opposite to what was expected. 

One possible explanation is wind causing large differences in airspeed and 

subsequently angle of attack, resulting in the exact opposite reaction to what is 

expected and what was commanded. In navigation mode, large oscillations can be 

seen in pitch, and observed also in the altitude plot and result in poor altitude 

tracking. In CA mode, commands are smooth and relatively benign early in the 
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encounter. This is exactly the pattern one would want in collision situations and gives 

assurance to the algorithm’s design. 

 
Figure 4-46:  Flight Test Approaching Encounter 2 Pitch Response 

The airspeed response is shown in Figure 4-47 and the turn rate response is in 

Figure 4-48. BATCAM 1 is commanded to initially increase its airspeed and then 

steadily decreases throughout the encounter. The commands to BATCAM 2 are 

constant and at a slightly lower airspeed than in navigation mode. The BATCAM 1 

response contains a steady-state error resulting in a slower airspeed, and the 

BATCAM 2 response contains a steady-state error resulting in a faster airspeed. 

These errors are caused by the BATCAMs turning into and away from the wind.  
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Figure 4-47:  Flight Test Approaching Encounter 2 Airspeed Response 

 
Figure 4-48:  Flight Test Approaching Encounter 2 Turn Rate Response 
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In SIL and HIL testing, it was not possible to record the turn rate command. 

However, in flight test, the turn rate command is recorded, but only in navigation 

mode. When in Manual mode, the command returns to zero, but not instantaneously. 

This is evidence of another autopilot control loop that generates turn rate commands 

is the one being recorded, and drifts to zero when not in navigation mode. 

Unfortunately, this still means CA turn rate commands are unavailable for recording, 

and only conjectures can be made about the response. One obvious conclusion about 

turn rate is that the measurements are extremely noisy. Only qualitative observations 

can be made, and no clear command pattern can be determined. By comparing to the 

trajectories in Figure 4-43, BATCAM 2 clearly receives a positive turn rate 

command, and BATCAM 1 also receives a positive command, though much less 

aggressive. These trends agree with those seen in Figure 4-48.  

 
Figure 4-49:  Flight Test Head-on Encounter 2 Trajectories 
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One of the most successful Head-on encounters was the second one flown. 

The BATCAMs were transitioning into their waypoint following routes and turned 

towards each other at a much smaller range (200 m) than the maximum CA range 

(300 m). Both BATCAMs switched to CA mode simultaneously after the CA 

algorithm immediately detected an imminent violation of minimum separation. The 

initial encounter through CPA was well behaved and demonstrated successful 

avoidance maneuvers. The range at CPA was approximately 45 m, and is about the 

same as the Approaching encounter discussed previously (47 m). The uncertainties in 

the system and environment caused consistent deviations from the desired minimum 

separation for both of these encounters. The trajectories for this encounter are in 

Figure 4-49. The range plot, in Figure 4-50, shows the CPA at approximately 785 sec 

and then additional undesired mode switching afterwards due to the communication 

delay and subsequent command build-up.  

The excessive mode switching in Figure 4-50 after the CPA was caused by 

additional potential collision encounters. The communication delay did not allow a 

switch back to navigation mode and the BATCAMs continued processing old 

avoidance commands that introduced new encounters. After the command buffer was 

exhausted, the BATCAMs did return to navigation mode. 

BATCAM 1 switched to CA mode and began to climb, even though it was at 

a lower altitude. This disagrees with the pitch command, which was correctly 

commanded by the algorithm. BATCAM 1 is initially commanded to pitch down but 
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because of a steady state error, it maintains a positive pitch angle and climbs. The 

altitude is in Figure 4-51 and the pitch response is in Figure 4-52. 

 
Figure 4-50:  Flight Test Head-on Encounter 2 Range 

 
Figure 4-51:  Flight Test Head-on Encounter 2 Altitude 
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Figure 4-52:  Flight Test Head-on Encounter 2 Pitch Response 

 
Figure 4-53:  Flight Test Head-on Encounter 2 Airspeed Response 
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The airspeed commands, in Figure 4-53, from mode switch to CPA are well 

behaved. After the CPA, when CA should be turned off, they begin to look like a 

bang-bang type control. This is caused by the same problem seen in SIL testing where 

the CA airspeed commands are overwritten because of control loop settings beyond 

those adjusted for CA Manual mode. The turn rate commands, in Figure 4-54, behave 

as expected and exhibit commands positive in sign. As the aircraft approach CPA, 

positive turn rate commands would separate the aircraft. 

 
Figure 4-54:  Flight Test Head-on Encounter 2 Turn Rate Response 
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immediately detected the potential collision and initiated maneuvers for both aircraft 

while BATCAM 1 was in its turn. Sufficient separation (80 m) was still successfully 

maintained even with such close proximity prior to detection. This case shows that 

minimum separation or more can still be maintained with little time before the CPA 

by issuing aggressive commands. The trajectories for this encounter are shown in 

Figure 4-55.  

The data rate for this encounter was quite poor. For the entire collision 

encounter, data was recorded once only every few seconds and explains the 

discontinuous telemetry plots. 

 
Figure 4-55:  Flight Test Head-on Encounter 4 Trajectories 
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Figure 4-56:  Flight Test Head-on Encounter 4 Altitude 

 

Figure 4-57:  Flight Test Head-on Encounter 4 Range 
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Altitude and range are shown in Figures 4-56 and 4-57, respectively. The 

altitude responses display consistent patterns with their associated commands. 

BATCAM 1 behaves as expected; it is commanded to pitch down and responds by 

losing altitude. BATCAM 2 is commanded to pitch up and initially begins gaining 

altitude. However, it eventually loses altitude even though it maintains airspeed. Even 

with this loss, the BATCAMs are still separated in altitude by 33 m and successfully 

surpass the minimum 20 m of separation. The rapidly changing dynamics are difficult 

to characterize because data is recorded at a slow rate, as much as five seconds 

between points. The pitch and airspeed responses are shown in Figures 4-58 and 4-59, 

respectively. 

 
Figure 4-58:  Flight Test Head-on Encounter 4 Pitch Response 
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Figure 4-59:  Flight Test Head-on Encounter 4 Airspeed Response 

 
Figure 4-60:  Flight Test Head-on Encounter 4 Turn Rate Response 
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The trajectories in Figure 4-55 clearly show both BATCAMs receive positive 

turn rate commands. Because the measurements for turn rate are obtrusively noisy 

and infrequent, this is not apparent in the turn rate data as shown in Figure 4-60. 

Table 4-6:  Flight Test Statistics 

Parameter 

Flight 

Head-on Approach 

1 2 31 4 1 2 

Time of Minimum 
Lateral Separation 

676.74 s 785.17 s 343.88 s 253.67 s 567.76 s 750.95 s 

Minimum Lateral 
Separation 

13.19 m 42.04 m 255.22 m 80.41 m 233.97 m 45.72 m 

Time of Minimum 
Slant Range 

676.74 s 785.17 s 343.88 s 253.67 s 567.76 s 750.95 s 

Minimum Slant 
Range 

24.24 m 45.11 m 255.34 m 86.98 m 236.83 m 47.32 m 

UAS1 Alt at 
Tmin,LS 

117.00 m 130.50 m 124.33 m 107.17 m 101.83 m 134.50 m 

UAS2 Alt at 
Tmin,LS 

137.33 m 146.83 m 132.20 m 140.33 m 138.54 m 122.28 m 

UAS1 Alt at 
Tmin,SR 

117.00 m 130.50 m 124.33 m 107.17 m 101.83 m 134.50 m 

UAS2 Alt at 
Tmin,SR 

137.33 m 146.83 m 132.20 m 140.33 m 138.54 m 122.28 m 

1. Virtual Cockpit application displayed an error and closed resulting in data 
loss. Aircraft initiated “lost-comm” mode. 
 
 

Statistics for the two encounters discussed above and the remaining 

encounters flown are in Table 4-6. Plots for the remaining flights are in Appendix F. 

Head-on, Flight 1, resulted in good geometry, but only BATCAM 1 entered CA 

mode. Flight 3 of the Head-on encounters showed promising geometry and both 

BATCAMs began performing avoidance maneuvers, but Virtual Cockpit returned an 
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error and shut down. This caused “lost comm” mode in the autopilots and they were 

commanded to return to their rally points. Only the initial maneuver and commands 

was recorded. This error was an anomaly, and has never before been seen in flight 

test or bench testing.  

The first Approaching encounter was an excellent encounter for command 

generation and response, but the BATCAMs reacted much more aggressively than 

anticipated. BATCAM 1 turned nearly 180 deg and the aircraft never made a close 

approach at or near the minimum separation. These maneuvers can be partially 

attributed to wind conditions during the flight. Further investigation into the 

conversion of avoidance algorithm commands to Kestrel commands might alleviate 

some aggressive maneuvering for these particular aircraft. Additionally, the 

proportional navigation gains can be tuned for the aircraft if it is determined that they 

are accurately tracking the commands.  

3.3. Flight Test Summary 

Flight test validated the collision avoidance algorithm’s ability to perform 

collision detection and avoidance maneuver generation. The BATCAM aircraft were 

able to respond to and avoid a minimum separation volume around each other as a 

result of the CA algorithm and in the presence of environmental and system 

uncertainty. The algorithm not only generated guidance commands, it provided 

system-specific flags that initiated autonomous mode switching with the human 

operator completely out of the loop. Flight test also confirmed successful integration 

of the algorithm into the BATCAM system, although improvements need to be made. 
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Flight test showed that turn rate and airspeed commands were effectively 

commanded and sufficiently tracked to provide lateral separation. Pitch commands 

that are responsible for altitude changes did not, however, provide vertical separation. 

Assumptions made in order to use pitch commands were not valid for this particular 

aircraft and resulted in undesirable vertical responses. Aircraft telemetry data was 

sufficient to detect potential losses of separation and issue successful avoidance 

commands, but was often excessively noisy and infrequent. 
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V. Conclusions and Recommendations 

1. Chapter Overview 

Chapter V provides a discussion of the collision avoidance system’s development, 

application, and testing, as well as a “big picture” examination of current CA topics. 

Many aspects of this application and testing are specific to the available hardware and 

software, but considerations were always included throughout the design and evolution of 

the algorithm for other systems and missions. Military and civil applications were 

considered because, ultimately, the technologies related to this research will be far-

reaching. 

2. Conclusions of Research 

A collision avoidance algorithm was developed and successfully implemented in 

a multi-vehicle miniature unmanned aircraft system. This algorithm was conceived after 

an extensive literature review of current conflict detection and resolution theories and 

methods with an attempt to capture the benefits of those methods and apply them in a 

single algorithm. The detection portion of the algorithm, based on geometric methods, 

has inherent simplifications (i.e. nominal trajectory projections) that are more robustly 

addressed in other approaches (e.g. probabilistic methods) but are overcome by its 

simplistic application to many systems and threat environments. No pre- or post-

processing is required to represent the overall threat environment, and only tuning of 

navigation constants are required for different platforms. Novel developments include an 

approach to provide spatial awareness of all threats in a global sense to each vehicle in 

the cooperative system. Algorithm interfaces allow both cooperative and non-cooperative 
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inputs to be processed simultaneously and provide a truly global consideration of the 

environment only limited by sensing capability. The avoidance component of the 

algorithm is coupled with the detection algorithm to provide autonomous, continuous, 

and reactive commands to any collision encounter without a need for hard-coded threat 

prioritization or scripted maneuvers. Simple maneuver coordination logic is applied in the 

vertical dimension for the direction of the command. All other commands are completely 

autonomous and governed by the guidance law. 

Effects of uncertainties in the environment and the host-system are mitigated by 

defining separation volumes that are sufficiently large and by commanding maneuvers in 

multiple dimensions for separation. Multi-dimensional commands provide a layer of 

redundancy in that the algorithm is always trying to achieve two independent separation 

distances. If one fails, the other is still active. 

3. Significance of Research 

This research resulted in the first known flight tests of a multiple-vehicle, global, 

three-dimensional CA algorithm. Miniature unmanned aircraft were placed in dynamic, 

real-world encounters and responded to autonomously generated avoidance commands. 

The algorithm provides an autonomous CA capability for any encounter geometry and is 

not limited to any particular system or sensing capability. This algorithm evolves from 

contemporary and prevalent research areas focused on conflict detection and resolution, 

sense and avoid, and CA of manned aircraft, robotics, and unmanned technologies. 

Advantages of certain methods were exploited and an amenable approach was taken 

while addressing limitations. A mixture of theoretical fields were combined to develop 
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the final algorithm: robotics (e.g. collision cone approach), homing guidance (e.g. 

proportional navigation), and airspace management (e.g. separation criteria). The 

significance of the results is not just an assessment of the effectiveness of this particular 

algorithm, but the consideration of all aspects of deconflicting unmanned systems, i.e. 

sensing and measurement requirements, system integration, control commands and 

tracking, and necessary test procedures and equipment to evaluate the effectiveness. 

The ability to avoid obstacles and objects is of utmost concern for unmanned 

systems and the missions they are assigned. Weaponized unmanned aircraft will 

proliferate as technology advances and an alternative to endangering our warfighters 

becomes reliable and readily available. Their numbers and missions will expand and 

inevitably make a CA capability a system requirement. CA is already a requirement for 

any unmanned system requesting access to the NAS as stated in FAA regulations [35]. 

The specifics of this requirement are not defined and will not be defined for some time. 

As the author is writing this thesis, a bill has been introduced in the United States 

Congress with provisions for defining a timeline and requirements for unmanned system 

integration into the NAS [36]. The Federal Aviation Administration and the users 

requesting access to the NAS (Department of Defense, Department of Homeland 

Security, Customs and Border Protection, and Commercial and Private Users) are 

struggling to find a resolution between safety concerns and the desire for rapid 

integration and are willing to spend hundreds of millions of dollars to find a solution. CA 

is an integral part of unmanned system access to the NAS and a “sense and avoid” 

capability is arguably the most important, and unfortunately, ambiguous necessity for 

approval.  
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4. Recommendations for Action 

Bench test and flight test activities and results have revealed several items 

pertaining to the CA implementation, not the algorithm itself, which require immediate 

attention. Communication delay issues resulting from a build-up of commands due to 

processing limitations, not from a constant transmission delay, need to be addressed. This 

is a UAS-specific characteristic external to the algorithm that needs to be precisely 

located in the communication chain. Previous testing with the ANT laboratory BATCAM 

system experienced similar problems and an application-specific solution was 

implemented [37]. This solution involves pulsing commands so a build-up of 

communication packets does not occur. This is not compatible with a CA algorithm that 

sends more commands to more aircraft. Due to the small amount of time available to 

deconflict the aircraft in a collision encounter, any attempt to clear unprocessed packets 

from a buffer would only increase the collision potential. Quantization is another option 

to alleviate increasing delays in the communication channels. This would reduce the 

number of packets sent, but would result in larger commands being generated later in the 

encounter because of smaller resultant command responses in the beginning of the 

encounter. The proportional navigation guidance commands are proportional to the rate 

of change of the collision cone boundaries, which are small at larger ranges and 

continuously increase as the range decreases. If the commands do not continuously grow 

proportional to the bound rates and are quantized based on a pre-determined delta value, 

deconfliction will occur later in the encounter timeline with larger magnitudes of 

resultant commands. Dynamic delta values in the quantization may lessen this effect, but 

is out of scope of this thesis. 
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One possible improvement to the increasing communication delay is aggregating 

the three commands for each aircraft into a single packet, thereby, reducing the number 

of packets sent. The current interface between the CA algorithm and the autopilot does 

not support this. Commands are currently sent separately to each BATCAM in a 

sequential manner. Action should be taken to determine if the Kestrel autopilot 

communication interfaces support this modification. It should also be determined whether 

or not the Kestrel autopilot and Virtual Cockpit GCS support separate communication 

links for telemetry and control packets. This would divide the two-way communication 

traffic and possibly hasten transmissions. 

The small angle of attack assumption and the assumption that the dynamic delay 

between pitch changes and altitude changes were proven to be inaccurate in flight tests 

with environmental uncertainty. These assumptions were applied in order to convert the 

algorithm flight path angular rate command to the available Kestrel pitch command. The 

most current version of the Kestrel autopilot includes a climb rate command that can be 

more directly calculated from flight path rate commands. Regrettably, the reason turn rate 

command recording was not available is because turn rate commands may not be 

available in that same version of the autopilot as explained in discussions with Procerus 

engineers. It seems compatibility between all desired commands cannot be acquired 

simultaneously. This is an unfortunate side-effect of an evolving autopilot design and the 

users’ attempt to develop their own applications.   
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5. Recommendations for Future Research 

In any system with uncertainty, either inherent in the system or as a result of 

external inputs, there is no guarantee of desired results; there is only a probability that 

they will be achieved successfully. This applies to CA and the efforts to maintain 

minimum separation. The likelihood that this thesis’ CA system will deconflict aircraft 

and maintain minimum separation could be quantitatively determined in Monte Carlo 

simulations prior to additional flight tests and implementation into more systems. 

Parametric studies should be completed to determine, based on the probabilities from 

each Monte Carlo run, what separation volume lateral and vertical distances would result 

in the highest likelihood of maintaining separation within some constraints. An 

independent variable in these studies is the required probability of maintaining 

separation. Depending on the system, the mission, and the user, should the separation be 

maintained 90%, 95% or 99% of the time? For inexpensive, expendable systems, a 

simple, less reliable CA system may be desired. For a complex, expensive system such as 

a Global Hawk UAS, an accurate and dependable CA system will be required.  

Furthermore, in cases where separation is lost, what is the probability that the 

aircraft will actually collide? These statistics can be gleaned from the same Monte Carlo 

runs as for loss of separation studies, but more iterations may be required to have a 

statistically sufficient amount of encounters. These types of studies could be performed 

for a variety of algorithms or algorithm variations. Analyses such as these will be 

required by the FAA for candidate sense and avoid systems prior to unmanned system 

integration into the NAS. 
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The algorithm developed in this research was intentionally constructed in a 

generic manner for compatibility with many systems. However, when applied to a 

specific system, certain aspects of the algorithm can be tailored for enhanced 

performance. The most obvious variables were discussed in this thesis: the separation 

volume, the maximum CA range, and the proportional navigation constants. Further 

modifications could be made for increased probability of maintaining separation. For 

example, all commands in three dimensions are applied for every collision encounter. It 

may be determined in simulations or flight test that particular encounter geometries 

require only one type of command or require more benign commands. A command 

selection algorithm could be designed with this information and energy savings or less 

impact on the UAS mission could be achieved. Adaptive proportional gains could be 

derived that result in an optimal avoidance maneuver. Techniques such as these have 

been researched, and were discussed in Chapter II, but not for an algorithm such as this, 

i.e. global, three-dimensional, and depending on the optimality condition, cooperative. 

The effectiveness of any modification will depend on the aircraft and the threats it will 

encounter. 

This algorithm relied on the Kestrel autopilot navigation mode to return the 

aircraft to waypoint following and their planned routes. Optimal trajectory generation 

could be used to return the aircraft to the planned routes before navigation mode is once 

again enabled. This would result in a CA and recovery algorithm that would both 

deconflict and restore the aircraft with minimal deviation from their original paths. 
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6. Summary 

Fundamental theory was examined and further developed for application to the 

collision avoidance problem in this thesis, and an algorithm was designed, coded, and 

tested in ideal simulations. Application to an unmanned aircraft system, including 

algorithm development, user and system interface construction, and software-in-the-loop 

and hardware-in-the-loop testing was completed to validate the approach. Flight tests 

were conducted to assess the algorithm and system’s performance in the presence of 

operational and environmental uncertainty. The results of all of the above efforts and 

events were discussed in detail along with high level discussions about current issues 

related to the collision avoidance topic.  
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Appendix A:  Collision Avoidance Algorithm/Virtual Cockpit Interface 

 
Inputs: 
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 where i indicates the ith UAS 

















=
i
UAS

i
UAS

i
UAS

i
UAS

Z
Y
X

P


 = UAS Local-Level Referenced Position (can be derived from GPS 

Latitude, Longitude, and Altitude) 
 

i
UASV  = UAS Speed (preferably groundspeed from GPS, airspeed only if groundspeed not 

available) 
 

i
UASψ  = UAS Ground Track (from GPS, heading is only acceptable if winds are accounted 

for) 
 

i
UASγ  = UAS Vertical Flight Path Angle (FPA) (can be derived, preferably, from velocity 

components, or assumed to equal, cautiously, aircraft pitch angle for small angle of 
attack) 
 

i
UASa  = UAS Translational Acceleration (can be assumed equal to the body X-axis 

acceleration for small angle of attack) 
 

i
UASψ  = UAS Turn Rate 

i
UASγ  = UAS Rate of Change of Vertical Flight Path Angle (can be derived from climb 

acceleration, or from both γ and body Z-axis acceleration) 
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Table A-1:  Algorithm to Kestrel Autopilot Variable Matrix, Virtual Cockpit 2.4 

 ICD Kestrel 
  Label Variable Name 

Position 

X F15 (F13) GPS East Pos 
Estimate (Measured) 

Y F16 (F14) GPS North Pos 
Estimate (Measured) 

Z F20 GPS Altitude 
Speed V F18 (F17) Ground Speed 

Estimate (Measured) 
Ground Track Ψ F19 (F7) GPS Heading 

(Filtered) 
Vertical FPA γ (F2) (Theta) 
Acceleration a F52 Ax (accelerometer) 
Turn Rate ψdot F33 Heading Rate 
Rate of Change of FPA1 γdot F54 and F18 (F17) Az and Speed 
 
Values in parentheses are alternates. 
 

1. Assumption: 
V
Az−

≈γ  

 

Table A-2:  Algorithm to Kestrel Autopilot Packet Variable Matrix, Virtual Cockpit 
2.4 

ICD Kestrel Communications 
Name  Packet Index Variable Name Units 

Position 

X 248 14 GPS Lon deg 
248 22 GPS Lon home deg 

Y 248 8 GPS Lat deg 
248 18 GPS Lat home deg 

Z 248 2 GPS Alt (m+1000)*6 
Speed V 248 0 GPS Velocity (m/s+10)*20 
Ground Track ψ 248 4 GPS Heading rad*1000 
Vertical FPA 









= −

V
h1sinγ  

249 76 Actual Climb Rate m/s*300 

Acceleration a 18 40 Ax m/s^2*1000 
Turn Rate ψdot 249 10 Heading Rate rad/s*1000 
Rate of 
Change of 
FPA1 

V
Az−

≈γ  
18 44 Az m/s^2*1000 

1. Assumes Z-axis is down 
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Conversions: 
 
X = (Lon - Lon Home) * dLon2m [Lon in deg] 
Y = (Lat - Lat Home) * dLat2m [Lat in deg] 
 
aLat = (Lat + Lat Home)/2 
dLon2m = 111415.13*cos(aLat) – 94.55*cos(3*aLat) 
dLat2m = 111132.09 – 566.05*cos(2*aLat) + 1.2*cos(4*aLat) 
 
Outputs: 
 
Algorithm: 
 

















com

com

com

a
γ
ψ




 = turn rate command, rate of change of vertical FPA command, acceleration 

command 
 
Kestrel Autopilot: 
 

1. Desired Turn Rate 
2. Desired Pitch Angle 
3. Desired Airspeed 

 

















+
+=

















dtaV
dt

V comdes

comdes

com

des

des

des

γθ
ψ

θ
ψ





 where small angle of attack is assumed, and dt is the time step 

between command transmittals ***must be set according to command transmissions*** 
 

Table A-3:  Algorithm to Kestrel Autopilot Command Packet Matrix, Virtual 
Cockpit 2.4 

Set Desired Value (Packet 231) Kestrel Communications (Section 3.58) 

Command Byte Index Variable Name Units 

desψ  27 Desired turn rate rad/s 

desθ  7 Desired pitch rad 

desV  23 Desired airspeed m/s 
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Appendix B:  Collision Cone Boundary Rates 

The following definitions and nomenclature are repeated here for convenience from [7] 
and [27]. The variables  and are the rates of change of the collision cone boundaries 
with respect to the line of sight. 
 
N21, Case 1: 
 

][21 null==ηη   

 
N21, Case 2: 
 

( ) ( ) ζ
ν
νζη

νζη
η 





 −+−
+

= 1
1

1 tan
cos

A
 

( ) ( ) ζ
ν
νζηπ

νζηπ
η 





 −−−+
−−

−
= 2

2
2 tan

cos
A  

 
N21, Case 3: 
 

211 case
ηη  =  

( ) ( ) ζ
ν
νζηπ

νζηπ
η 





 −−−−+
−−−

−
= 2

2
2 tan

cos
A  

 
N21, Case 4: 
 

021 ==ηη   

 
N22, Case 1: 
 

][~~
21 null==ηη   

 
N22, Case 2: 
 

( ) ( ) ζ
ν
νζη

νζη
η 







~~~tan~~cos

~
~

1
1

1 −+−
+

=
A  

( ) ( ) ζ
ν
νζηπ

νζηπ
η 







~~~tan~~cos

~
~

2
2

2 −−−+
−−

−
=

A  
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N22, Case 3: 
 

211
~~

case
ηη  =  

( ) ( ) ζ
ν
νζηπ

νζηπ
η 







~~~tan~~cos

~
~

2
2

2 −−−−+
−−−

−
=

A  

 
N22, Case 4: 
 

0~~
21 ==ηη   

 
where  
 

θβµ −=−= ;22 RrRp  

INT

UAS

V
V

p
p

p
pA =















+
=

+

+
= − νζµµ ;

1
sin;

1
sincos

2

1

2
 

ζπζµµ
−=

+

−
=

~;
1
sincos~

2p
pA  

( ) ( )µµζµζµζ sincoscossincoscos pApA −+−= 

  

( ) ( )µµζµµζζ sincos~coscos~sin~~cos~ pApA ++−= 

  

ζζ 2cosp =  

ζζ 

 −=
~  
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Appendix C:  Ideal Simulation Plots 

 
Figure C-1:  Ideal Approaching Simulation Trajectories, CPA at 32.9 s 

 

 
Figure C-2:  Ideal Approaching Simulation Avoidance Algorithm Commands 
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Figure C-3:  Ideal Approaching Simulation Kestrel Commands 

 

 
Figure C-4:  Ideal Approaching Simulation Range 
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Figure C-5:  Ideal Approaching Simulation Altitude 

 

 
Figure C-6:  Ideal Abeam Simulation Trajectories, CPA at 23.4 s 
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Figure C-7:  Ideal Abeam Simulation Avoidance Algorithm Commands 

 
Figure C-8:  Ideal Abeam Simulation Kestrel Commands 
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Figure C-9:  Ideal Abeam Simulation Range 

 
Figure C-10:  Ideal Abeam Simulation Altitude 
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Figure C-11:  Ideal Converging Simulation Trajectories, CPA at 55 s 

 
Figure C-12:  Ideal Converging Simulation Avoidance Algorithm Commands 
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Figure C-13:  Ideal Converging Simulation Kestrel Commands 

 
Figure C-14:  Ideal Converging Simulation Range 
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Figure C-15:  Ideal Converging Simulation Altitude 
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Appendix D:  SIL Simulation Plots 

 
Figure D-1:  SIL Approaching Simulation Trajectories 

 
Figure D-2:  SIL Approaching Simulation Airspeed 
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Figure D-3:  SIL Approaching Simulation Turn Rate 

 
Figure D-4:  SIL Approaching Simulation Pitch 
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Figure D-5:  SIL Approaching Simulation Range 

 
Figure D-6:  SIL Approaching Simulation Altitude 
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Figure D-7:  SIL Abeam Simulation Trajectories 

 
Figure D-8:  SIL Abeam Simulation Airspeed 
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Figure D-9:  SIL Abeam Simulation Turn Rate 

 
Figure D-10:  SIL Abeam Simulation Pitch 

90 95 100 105 110 115 120 125 130 135 140
-6

-3

0

3

6

9

12

Tu
rn

 R
at

e,
 d

eg
/s

UAV1

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode

90 95 100 105 110 115 120 125 130 135 140

0

5

10

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAV2

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode

90 95 100 105 110 115 120 125 130 135 140
-10

-5

0

5

10

P
itc

h,
 d

eg

UAV1

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode

90 95 100 105 110 115 120 125 130 135 140
-8

-4

0

4

8

t, s

P
itc

h,
 d

eg

UAV2

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode



 

142 

 
Figure D-11:  SIL Abeam Simulation Range 

 
Figure D-12:  SIL Abeam Simulation Altitude 
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Figure D-13:  SIL Converging Simulation Trajectories 

 
Figure D-14:  SIL Converging Simulation Airspeed 
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Figure D-15:  SIL Converging Simulation Turn Rate 

 
Figure D-16:  SIL Converging Simulation Pitch 
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Figure D-17:  SIL Converging Simulation Range 

 
Figure D-18:  SIL Converging Simulation Altitude 

140 145 150 155 160 165 170
0

500

t, s

R
, m

 

 

140 145 150 155 160 165 170
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

140 145 150 155 160 165 170
250

275

300

325

t, s

A
lt,

 m

 

 

140 145 150 155 160 165 170
Man

Nav

M
od

e

140 145 150 155 160 165 170
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

146 

Appendix E:  HIL Simulation Plots 

 
Figure E-1:  HIL Approaching Simulation Trajectories 

 
Figure E-2:  HIL Approaching Simulation Airspeed Avoidance Command 
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Figure E-3:  HIL Approaching Simulation Turn Rate Avoidance Command 

 
Figure E-4:  HIL Approaching Simulation Pitch Avoidance Command 
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Figure E-5:  HIL Approaching Simulation Range 

 
Figure E-6:  HIL Approaching Simulation Altitude 
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Figure E-7:  HIL Abeam Simulation Trajectories 

 

 
Figure E-8:  HIL Abeam Simulation Airspeed Avoidance Command 
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Figure E-9:  HIL Abeam Simulation Turn Rate Avoidance Command 

 
Figure E-10:  HIL Abeam Simulation Pitch Avoidance Command 
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Figure E-11:  HIL Abeam Simulation Range 

 
Figure E-12:  HIL Abeam Simulation Altitude 
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Figure E-13:  HIL Converging Simulation Trajectories 

 
Figure E-14:  HIL Converging Simulation Airspeed Avoidance Command 
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Figure E-15:  HIL Converging Simulation Turn Rate Avoidance Command 

 
Figure E-16:  HIL Converging Simulation Pitch Avoidance Command 
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Figure E-17:  HIL Converging Simulation Range 

 
Figure E-18:  HIL Converging Simulation Altitude 
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Appendix F:  Flight Test Plots 

 
Figure F-1:  Flight Test Head-on Encounter 1 Trajectories 

 
Figure F-2:  Flight Test Head-on Encounter 1 Airspeed Response 
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Figure F-3:  Flight Test Head-on Encounter 1 Turn Rate Response 

 
Figure F-4:  Flight Test Head-on Encounter 1 Pitch Response 
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Figure F-5:  Flight Test Head-on Encounter 1 Range 

 
Figure F-6:  Flight Test Head-on Encounter 1 Altitude 
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Figure F-7:  Flight Test Head-on Encounter 3 Trajectories 

 
Figure F-8:  Flight Test Head-on Encounter 3 Airspeed Response 
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Figure F-9:  Flight Test Head-on Encounter 3 Turn Rate Response 

 
Figure F-10:  Flight Test Head-on Encounter 3 Pitch Response 
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Figure F-11:  Flight Test Head-on Encounter 3 Range 

 
Figure F-12:  Flight Test Head-on Encounter 3 Altitude 
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Figure F-13:  Flight Test Approaching Encounter 1 Trajectories 

 
Figure F-14:  Flight Test Approaching Encounter 1 Airspeed Response 
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Figure F-15:  Flight Test Approaching Encounter 1 Turn Rate Response 

 
Figure F-16:  Flight Test Approaching Encounter 1 Pitch Response 
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Figure F-17:  Flight Test Approaching Encounter 1 Range 

 
Figure F-18:  Flight Test Approaching Encounter 1 Altitude  
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Appendix G:  Flight Test Procedures 
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Appendix H:  Collision Avoidance Algorithm MATLAB Code 

MULT_UAS_AA 

function [alphadotc gammadotc vdotc pdcKOUT tcKOUT vcKOUT... 
    r rh rv rdot conflict cflct_array cflct_arrayv] =... 
    
mult_uas_aa(Rl,VO,DMAX,dt,V_ALL,x_ALL,y_ALL,z_ALL,alpha_ALL,gamma_ALL,.
.. 
    vdot_ALL,alphadot_ALL,gammadot_ALL,varargin) 
  
persistent violation evasion evasionv flag flagv 
persistent pdcK tcK vcK 
  
Nuas=length(V_ALL); 
if Nuas<=1, 
    alphadotc=0; %alphadot_ALL; 
    gammadotc=0; %gammadot_ALL; 
    vdotc=0; %vdot_ALL; 
    pdcKOUT=0; %-alphadot_ALL; 
    tcKOUT=0; %gamma_ALL; 
    vcKOUT=0; %V_ALL; 
    r=0.0; 
    rh=0.0; 
    rv=0.0; 
    rdot=0.0; 
    conflict=0.0; 
    cflct_array=0.0; 
    cflct_arrayv=0.0; 
    return; 
else 
    % Pre-allocate some outputs 
    conflict=zeros(1,Nuas); 
    pdcKOUT=zeros(1,Nuas); 
    tcKOUT=zeros(1,Nuas); 
    vcKOUT=zeros(1,Nuas); 
    vdotc=zeros(1,Nuas); 
    gammadotc=zeros(1,Nuas); 
    alphadotc=zeros(1,Nuas); 
end 
  
if isempty(varargin), 
    Nnoncoop=0; 
else 
    Nnoncoop=length(varargin{1}); 
end 
  
if isempty(violation), 
    violation=zeros(1,Nuas); 
    evasion=zeros(1,Nuas); 
    evasionv=zeros(1,Nuas); 
    flag=zeros(1,Nuas); 
    flagv=zeros(1,Nuas); 
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elseif length(violation)<Nuas, 
    dim_viol=length(violation); 
    dim_addv=Nuas-dim_viol; 
    violation=[violation zeros(1,dim_addv)]; 
    evasion=[evasion zeros(1,dim_addv)]; 
    evasionv=[evasionv zeros(1,dim_addv)]; 
    flag=[flag zeros(1,dim_addv)]; 
    flagv=[flagv zeros(1,dim_addv)]; 
end 
  
if isempty(pdcK), 
    pdcK=-alphadot_ALL; 
    tcK=gamma_ALL; 
    vcK=V_ALL; 
elseif length(pdcK)<Nuas, 
    dim_pdcK=length(pdcK); 
    dim_add=Nuas-dim_pdcK; 
    pdcK=[pdcK' zeros(1,dim_add)]'; 
    tcK=[tcK' gamma_ALL(dim_pdcK+1:end).*ones(1,dim_add)]'; 
    vcK=[vcK' V_ALL(dim_pdcK+1:end).*ones(1,dim_add)]'; 
end 
  
if Nnoncoop>0, 
    V_F_non=varargin{1}; 
    x_F_non=varargin{2}; 
    y_F_non=varargin{3}; 
    z_F_non=varargin{4}; 
    beta_non=varargin{5}; 
    chi_non=varargin{6}; 
    vfdot_non=varargin{7}; 
    betadot_non=varargin{8}; 
    chidot_non=varargin{9}; 
else 
    V_F_non=[]; 
    x_F_non=[]; 
    y_F_non=[]; 
    z_F_non=[]; 
    beta_non=[]; 
    chi_non=[]; 
    vfdot_non=[]; 
    betadot_non=[]; 
    chidot_non=[]; 
end 
  
for jj=1:Nuas, 
  
    V_O=V_ALL(jj); 
    x_O=x_ALL(jj); 
    y_O=y_ALL(jj); 
    z_O=z_ALL(jj); 
    alpha=alpha_ALL(jj); 
    gamma=gamma_ALL(jj); 
    vdot=vdot_ALL(jj); 
    if jj==1, 
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        indexF=jj+1:Nuas; 
    elseif jj==Nuas, 
        indexF=1:Nuas-1; 
    else 
        indexF=[1:jj-1 jj+1:Nuas]; 
    end 
    indexFall=[indexF -1:-1:-length(V_F_non)]; 
    V_F=[V_ALL(indexF);V_F_non]; 
    x_F=[x_ALL(indexF);x_F_non]; 
    y_F=[y_ALL(indexF);y_F_non]; 
    z_F=[z_ALL(indexF);z_F_non]; 
    beta=[alpha_ALL(indexF);beta_non]; 
    chi=[gamma_ALL(indexF);chi_non]; 
    vfdot=[vdot_ALL(indexF);vfdot_non]; 
    betadot=[alphadot_ALL(indexF);betadot_non]; 
    chidot=[gammadot_ALL(indexF);chidot_non]; 
     
    %Calculate velocity components 
    Vx_O = V_O*cos(alpha)*cos(gamma); 
    Vy_O = V_O*sin(alpha)*cos(gamma); 
    Vz_O = V_O*sin(gamma); 
    Vx_F = V_F.*cos(beta).*cos(chi); 
    Vy_F = V_F.*sin(beta).*cos(chi); 
    Vz_F = V_F.*sin(chi); 
  
    % Range 
    r(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-1+Nnoncoop))    = sqrt((z_F-
z_O).^2+(y_F-y_O).^2+(x_F-x_O).^2); 
    rdot(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-1+Nnoncoop)) = ((Vy_F-
Vy_O).*(y_F-y_O)+(Vx_F-Vx_O).*(x_F-x_O)+(Vz_F-Vz_O).*(z_F-z_O))./... 
        sqrt((z_F-z_O).^2+(y_F-y_O).^2+(x_F-x_O).^2); 
    rh(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-1+Nnoncoop))   = sqrt((y_F-
y_O).^2+(x_F-x_O).^2); 
    rv(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-1+Nnoncoop))   = sqrt((z_F-
z_O).^2); 
  
    % Define Intruder Inputs for ones in Sensor Volume 
    x_F_in=x_F; 
    y_F_in=y_F; 
    z_F_in=z_F; 
    V_F_in=V_F; 
    vfdot_in=vfdot; 
    beta_in=beta; 
    chi_in=chi; 
    betadot_in=betadot; 
    chidot_in=chidot; 
  
    %Reset CCAA flags 
    Fv=violation(jj); 
    Fe=evasion(jj); 
    Fev=evasionv(jj); 
    Ff=flag(jj); 
    Ffv=flagv(jj); 
    Fsv=zeros(1,Nuas-1+Nnoncoop); 
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    %Process inputs 
    psiO=-alpha+pi/2; 
    psiF=-beta_in+pi/2; 
    gammaO=gamma; 
    gammaF=chi_in; 
    psidF=-betadot_in; 
    gammadF=chidot_in; 
  
    %Call CCAA 
    [psidotc gamdotc acc violation(jj) evasion(jj) evasionv(jj) 
flag(jj) flagv(jj) sensvol(jj,:)... 
        conflict(jj) cflct_int cflct_intv]=... 
        cc_pn_aa(x_O,y_O,z_O,V_O,vdot,psiO,gammaO,... 
        x_F_in,y_F_in,z_F_in,V_F_in,vfdot_in,psiF,... 
        gammaF,psidF,gammadF,Rl,VO,Fv,Fe,Fev,Ff,Ffv,Fsv); 
  
    seeint=1:Nuas-1+Nnoncoop; 
    cflct_see_int=[];cflct_true_int=[]; 
    cflct_see_intv=[];cflct_true_intv=[]; 
    %Determine conflict properties, if any 
    if ~isempty(cflct_int), 
        cflct_see_int=seeint(cflct_int); 
        cflct_true_int=indexFall(cflct_see_int); 
    end 
    if ~isempty(cflct_intv), 
        cflct_see_intv=seeint(cflct_intv); 
        cflct_true_intv=indexFall(cflct_see_intv); 
    end 
    cflct_array(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-
1+Nnoncoop))=[cflct_true_int';zeros(Nuas-1+Nnoncoop-
length(cflct_true_int),1)]; 
    cflct_arrayv(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-
1+Nnoncoop))=[cflct_true_intv';zeros(Nuas-1+Nnoncoop-
length(cflct_true_intv),1)]; 
  
    %Process outputs 
    alphadotc_=-psidotc; 
    gammadotc_=gamdotc; 
    vdotc_=acc; 
  
    vdotc(jj)=vdotc_; 
    gammadotc(jj)=gammadotc_; 
    alphadotc(jj)=alphadotc_; 
  
    %Kestrel Commands 
    if conflict(jj)>=1, 
        pdcK(jj)=-alphadotc(jj); 
        tcK(jj)=tcK(jj)+gammadotc(jj)*dt; 
        vcK(jj)=vcK(jj)+vdotc(jj)*dt; 
        %Range Check 
        csum=0; 
        for uu=1+(jj-1)*(Nuas-1):jj*(Nuas-1), 
            r_uu=r(uu); 
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            if ((cflct_array(uu)~=0) && (cflct_arrayv(uu)~=0) && 
r_uu<DMAX); 
                csum=1; 
                break; 
            end 
        end 
        if csum==0, 
            conflict(jj)=0; 
            vdotc(jj)=0; 
            alphadotc(jj)=0; 
            gammadotc(jj)=0; 
            vcK(jj)=V_ALL(jj); 
            pdcK(jj)=-alphadotc(jj); 
            tcK(jj)=gamma_ALL(jj); 
            violation(jj)=0; 
            evasion(jj)=0; 
            evasionv(jj)=0; 
            flag(jj)=0; 
            flagv(jj)=0; 
        end 
    else 
        pdcK(jj)=-alphadotc(jj); 
        tcK(jj)=gamma_ALL(jj); 
        vcK(jj)=V_ALL(jj); 
    end 
  
end 
  
%Coordinate Commands 
cflct_idx=find(conflict>=1); 
cflct_idx_len=length(cflct_idx); 
if cflct_idx_len>1, 
    for jj=1:cflct_idx_len-1, 
        primary=cflct_idx(jj); 
        others=cflct_idx(jj+1:end); 
        for kk=1:length(others), 
            if sign(gammadotc(primary))==sign(gammadotc(others(kk))), 
                gammadotc(others(kk))=-gammadotc(others(kk)); 
                
tcK(others(kk))=tcK(others(kk))+2*gammadotc(others(kk))*dt; 
            end 
        end 
    end 
end 
  
pdcKOUT=pdcK; 
tcKOUT=tcK; 
vcKOUT=vcK; 
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CC_PN_AA 

function [psidotc gamdotc acc violation evasion evasionv flag flagv 
sensvol... 
    conflict cflct_int cflct_intv]=... 
    
cc_pn_aa(x_O,y_O,z_O,V_O,vdot,psiO,gammaO,x_F,y_F,z_F,V_F,vfdot,psiF,..
. 
    gammaF,psidF,gammadF,Rl,VO,Fv,Fe,Fev,Ff,Ffv,Fsv) 
  
%Minimum Separation Parameters 
R=Rl; 
Hv=VO; 
  
%Determine number if intruders 
Ni=length(x_F); 
  
%Convert aircraft parameters to Collision Cone parameters 
alpha=wrap_mpi2pi(-psiO+pi/2); 
beta(:,1)=wrap_mpi2pi(-psiF+pi/2); 
gamma=wrap_mpi2pi(gammaO); 
chi(:,1)=wrap_mpi2pi(gammaF); 
  
betadot=-psidF; 
chidot=gammadF; 
  
%Calculate velocity components 
Vx_O = V_O*cos(alpha)*cos(gamma); 
Vy_O = V_O*sin(alpha)*cos(gamma); 
Vz_O = V_O*sin(gamma); 
Vx_F = V_F.*cos(beta).*cos(chi); 
Vy_F = V_F.*sin(beta).*cos(chi); 
Vz_F = V_F.*sin(chi); 
  
%Initialize Flags 
violation = Fv; 
evasion = Fe; 
evasionv = Fev; 
flag = Ff; 
flagv = Ffv; 
sensvol = Fsv; 
  
%Calculate necessary parameters 
% range 
r = sqrt((z_F-z_O).^2+(y_F-y_O).^2+(x_F-x_O).^2); 
rh = sqrt((y_F-y_O).^2+(x_F-x_O).^2); 
% line of sight angle 
th=atan2(y_F-y_O,x_F-x_O); 
phii_=atan2(z_F-z_O,cos(th).*(x_F-x_O)+sin(th).*(y_F-y_O)); 
phii=atan2(z_F-z_O,cos(alpha).*(x_F-x_O)+sin(alpha).*(y_F-y_O)); 
% relative velocity along LOS 
vri=V_F.*cos(beta-th).*cos(chi-phii_)-V_O.*cos(alpha-th).*cos(gamma-
phii_); 
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% relative velocity perp to LOS 
vthi=V_F.*sin(beta-th).*cos(chi-phii_)-V_O.*sin(alpha-th).*cos(gamma-
phii_); 
vphi=V_F.*sin(chi-phii_)-V_O.*sin(gamma-phii_); 
% relative velocity magnitude 
vrel = sqrt((V_O*cos(alpha)*cos(gamma)-V_F.*cos(beta).*cos(chi)).^2+... 
    (V_O*sin(alpha)*cos(gamma)-V_F.*sin(beta).*cos(chi)).^2+... 
    (V_O*sin(gamma)-V_F.*sin(chi)).^2); 
% relative heading 
psirel = atan2((V_O*sin(alpha)-V_F.*sin(beta)),(V_O*cos(alpha)-
V_F.*cos(beta))); 
phirel = atan2((V_O*sin(gamma)-V_F.*sin(chi)),(V_O*cos(gamma)-
V_F.*cos(chi))); 
% Relative azimuth and elevation calculations 
xrfeh = cos(alpha)*(x_F-x_O)+sin(alpha)*(y_F-y_O); 
yrfeh = -sin(alpha)*(x_F-x_O)+cos(alpha)*(y_F-y_O); 
relaz = atan2(-yrfeh,xrfeh); 
rrfev = sqrt(xrfeh.^2+yrfeh.^2)*cos(gamma)+(z_F-z_O)*sin(gamma); 
zrfev = -sqrt(xrfeh.^2+yrfeh.^2)*sin(gamma)+(z_F-z_O)*cos(gamma); 
relel = atan2(zrfev,rrfev); 
  
%Vertical collision circle calculations 
% vertical line of sights to hockey-puck corners 
rRv=sqrt((z_F-z_O).^2+(cos(alpha).*(x_F-x_O)+sin(alpha).*(y_F-
y_O)).^2); 
for oo = 1:Ni, 
    if (z_F(oo)-z_O) >= (Hv), 
        philow(oo) = atan2(rRv(oo).*sin(phii(oo))-
(Hv),rRv(oo).*cos(phii(oo))+R); 
        phihig(oo) = 
atan2(rRv(oo).*sin(phii(oo))+(Hv),rRv(oo).*cos(phii(oo))-R); 
    elseif (z_F(oo)-z_O) < (Hv) && (z_F(oo)-z_O) > -(Hv), 
        philow(oo) = atan2(rRv(oo).*sin(phii(oo))-
(Hv),rRv(oo).*cos(phii(oo))-R); 
        phihig(oo) = 
atan2(rRv(oo).*sin(phii(oo))+(Hv),rRv(oo).*cos(phii(oo))-R); 
    else 
        philow(oo) = atan2(rRv(oo).*sin(phii(oo))-
(Hv),rRv(oo).*cos(phii(oo))-R); 
        phihig(oo) = 
atan2(rRv(oo).*sin(phii(oo))+(Hv),rRv(oo).*cos(phii(oo))+R); 
    end 
end 
psiv = phihig-philow; 
Rv = rRv.*sin(psiv'/2); 
% center of vertical circle 
x_ccv = rRv.*abs(cos(philow' + psiv'/2)).*cos(alpha).*sign(xrfeh); %ALS 
- ABS value function 
y_ccv = rRv.*abs(cos(philow' + psiv'/2)).*sin(alpha).*sign(xrfeh); %ALS 
- ABS value function 
z_ccv = rRv.*sin(philow' + psiv'/2); 
% LOS and relative velocities to vertical circle 
phic_=atan2(z_ccv,cos(th).*(x_ccv)+sin(th).*(y_ccv)); 
phic=atan2(z_ccv,cos(alpha).*(x_ccv)+sin(alpha).*(y_ccv)); 
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vrc=V_F.*cos(beta-alpha).*cos(chi-phic)-V_O.*cos(alpha-
alpha).*cos(gamma-phic); 
vthc=V_F.*sin(beta-alpha).*cos(chi-phic)-V_O.*sin(alpha-
alpha).*cos(gamma-phic); 
vphc=V_F.*sin(chi-phic)-V_O.*sin(gamma-phic); 
% rate of change of collision avoidance vector angle 
gam = asin(R./rh); 
thdot = ((Vy_F-Vy_O).*(x_F-x_O)-(Vx_F-Vx_O).*(y_F-y_O))./... 
    ((x_F-x_O).^2+(y_F-y_O).^2); 
gamv = asin(Rv./rRv); 
phi = phic; 
h_Phi = sqrt((x_F-x_O).^2+(y_F-y_O).^2); 
Vh_Phi = sqrt((Vx_F-Vx_O).^2+(Vy_F-Vy_O).^2); 
pdden = (h_Phi.^2+(z_F-z_O).^2); 
for pd_i=1:length(pdden), 
    pdden(pd_i)=max([1e-6 pdden(pd_i)]); 
end 
phidot = ((Vz_F-Vz_O).*h_Phi-Vh_Phi.*(z_F-z_O))./pdden; 
  
%Collision Cone parameters 
mu = beta - th; 
nu = (V_O*cos(gamma))./(V_F.*cos(chi)); 
p = R./sqrt(rh.^2-R^2); 
%muv = chi - phi; 
for kl=1:Ni, 
    if sign(xrfeh(kl))>0 && cos(alpha-beta(kl))<0, 
        muv(kl) = (pi-chi(kl)) - phi(kl); 
    else 
        muv(kl) = chi(kl) - phi(kl); 
    end 
end 
nuv = (V_O)./(V_F.*abs(cos(beta-alpha))); %ALS - ABS value function 
pv = Rv./sqrt(rRv.^2-Rv.^2); 
  
pdot = vri.*(-p.^3.*rh/(R^2)); 
mudot = betadot-thdot; 
pdotv = vrc.*(-pv.^3.*rRv./(Rv.^2)); 
mudotv = chidot-phidot; 
nudot = (vdot*cos(gamma))./(V_F.*cos(chi)) - nu.*vfdot./V_F; %ALS 
nudotv = vdot./(V_F.*abs(cos(beta-alpha))) - nuv.*vfdot./V_F; %ALS 
  
%Collision Check 
% initialize cone variables as empty 
acount=[]; 
alpha_up=[];alpha_dn=[];alpha_up_dot=[];alpha_dn_dot=[]; 
acountv=[]; 
alpha_upv=[];alpha_dnv=[];alpha_up_dotv=[];alpha_dn_dotv=[]; 
% check each Intruder 
for kk = 1:Ni, 
    %Check for intruder in sensor volume 
    %Check for miss distance violation 
    violation1=zeros(1,Ni); 
    if r(kk) <= R && z_O>z_F(kk)-Hv && z_O<z_F(kk)+Hv, 
        violation1(kk) = 1; 
        alpha_up=[];alpha_dn=[];alpha_up_dot=[];alpha_dn_dot=[]; 
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        alpha_upv=[];alpha_dnv=[];alpha_up_dotv=[];alpha_dn_dotv=[]; 
        break; 
    elseif violation == 1, 
        alpha_up=[];alpha_dn=[];alpha_up_dot=[];alpha_dn_dot=[]; 
        alpha_upv=[];alpha_dnv=[];alpha_up_dotv=[];alpha_dn_dotv=[]; 
        break; 
    else 
        %Call Collision Cone 
        [eta_up,eta_dn,eta_up_dot,eta_dn_dot] = 
f_collisioncone4(mu(kk),nu(kk),p(kk),mudot(kk),nudot(kk),pdot(kk)); 
        [eta_upv,eta_dnv,eta_up_dotv,eta_dn_dotv] = 
f_collisioncone4(muv(kk),nuv(kk),pv(kk),mudotv(kk),nudotv(kk),pdotv(kk)
); 
        %Dispose of invalid cones 
        deta=abs(eta_up-eta_dn); 
        detav=abs(eta_upv-eta_dnv); 
        ide=find(deta>1e-4 & deta<2*pi-1e-4); 
        idev=find(detav>1e-4 & detav<2*pi-1e-4); 
        eta_up=eta_up(ide); 
        eta_up_dot=eta_up_dot(ide); 
        eta_dn=eta_dn(ide); 
        eta_dn_dot=eta_dn_dot(ide); 
        eta_upv=eta_upv(idev); 
        eta_up_dotv=eta_up_dotv(idev); 
        eta_dnv=eta_dnv(idev); 
        eta_dn_dotv=eta_dn_dotv(idev); 
        %Define Angular Limits of cones 
        alpha_up = [alpha_up; eta_up' + th(kk)]; 
        alpha_dn = [alpha_dn; eta_dn' + th(kk)]; 
        alpha_up_dot = [alpha_up_dot; eta_up_dot' + thdot(kk)]; 
        alpha_dn_dot = [alpha_dn_dot; eta_dn_dot' + thdot(kk)]; 
  
        alpha_upv = [alpha_upv; eta_upv' + phi(kk)]; 
        alpha_dnv = [alpha_dnv; eta_dnv' + phi(kk)]; 
        alpha_up_dotv = [alpha_up_dotv; eta_up_dotv' + phidot(kk)]; 
        alpha_dn_dotv = [alpha_dn_dotv; eta_dn_dotv' + phidot(kk)]; 
         
        %Record the number of cones 
        acount = [acount length(eta_up)]; 
        acountv = [acountv length(eta_upv)]; 
    end 
end 
violation = max(violation1); 
  
%Check and correct for horizontal cone overlap 
overlap_reg=[]; 
if ~isempty(alpha_up), 
    alpha_up_P = wrap_pos(alpha_up); 
    alpha_dn_N = wrap_neg(alpha_dn); 
    alpha_up_N = wrap_neg(alpha_up); 
    alpha_dn_P = wrap_pos(alpha_dn); 
    [alfs aidx]=sort(alpha_up_P); 
    alpha_up_P=alpha_up_P(aidx); 
    alpha_dn_N=alpha_dn_N(aidx); 
    alpha_up_N=alpha_up_N(aidx); 
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    alpha_dn_P=alpha_dn_P(aidx); 
    alpha_up=alpha_up(aidx); 
    alpha_dn=alpha_dn(aidx); 
    if sum(acount)>1, 
        for nn = 1:sum(acount)-1, 
            mmsweep=nn+1:sum(acount); 
            for mm = mmsweep, 
                %Correct for Quadrant 1 and 4 overlap/non-overlap and 
                % zero boundary 
                if alpha_dn_N(nn)>alpha_up_N(nn) && 
alpha_dn_N(nn)~=alpha_up_N(mm), 
                    alpha_dn_N(nn)=alpha_dn_N(nn)-2*pi; 
                    alpha_dn_P(nn)=alpha_dn_P(nn)-2*pi; 
                end 
                if alpha_dn_N(mm)>alpha_up_N(mm) && 
alpha_dn_N(mm)~=alpha_up_N(nn), 
                    alpha_dn_N(mm)=alpha_dn_N(mm)-2*pi; 
                    alpha_dn_P(mm)=alpha_dn_P(mm)-2*pi; 
                end 
                if alpha_up_N(nn)>alpha_dn_N(mm) && 
alpha_dn_P(mm)<alpha_up_P(nn), 
                    overlap_reg=[overlap_reg;nn mm]; 
                    [temp loc]=max([alpha_up_P(nn) alpha_up_P(mm)]); 
                    if loc==1, 
                        alpha_up(mm)=alpha_up(nn); 
                        alpha_up_dot(mm)=alpha_up_dot(nn); 
                        %%ALS 
                        alpha_up_P(mm)=alpha_up_P(nn); 
                        alpha_up_N(mm)=alpha_up_N(nn); 
                        %% 
                    elseif loc==2, 
                        alpha_up(nn)=alpha_up(mm); 
                        alpha_up_dot(nn)=alpha_up_dot(mm); 
                        %%ALS 
                        alpha_up_P(nn)=alpha_up_P(mm); 
                        alpha_up_N(nn)=alpha_up_N(mm); 
                        %% 
                    end 
                    [temp1 loc1]=min([alpha_dn_N(nn) alpha_dn_N(mm)]); 
                    if loc1==1, 
                        alpha_dn(mm)=alpha_dn(nn); 
                        alpha_dn_dot(mm)=alpha_dn_dot(nn); 
                        %%ALS 
                        alpha_dn_N(mm)=alpha_dn_N(nn); 
                        alpha_dn_P(mm)=alpha_dn_P(nn); 
                        %% 
                    elseif loc1==2, 
                        alpha_dn(nn)=alpha_dn(mm); 
                        alpha_dn_dot(nn)=alpha_dn_dot(mm); 
                        %%ALS 
                        alpha_dn_N(nn)=alpha_dn_N(mm); 
                        alpha_dn_P(nn)=alpha_dn_P(mm); 
                        %% 
                    end 
                end 
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            end 
        end 
    end 
end 
%Check and correct for vertical cone overlap 
overlapv_reg=[]; 
if ~isempty(alpha_upv), 
    alpha_up_Pv = wrap_pos(alpha_upv); 
    alpha_dn_Nv = wrap_neg(alpha_dnv); 
    alpha_up_Nv = wrap_neg(alpha_upv); 
    alpha_dn_Pv = wrap_pos(alpha_dnv); 
    [alfsv aidxv]=sort(alpha_up_Pv); 
    alpha_up_Pv=alpha_up_Pv(aidxv); 
    alpha_dn_Nv=alpha_dn_Nv(aidxv); 
    alpha_up_Nv=alpha_up_Nv(aidxv); 
    alpha_dn_Pv=alpha_dn_Pv(aidxv); 
    alpha_upv=alpha_upv(aidxv); 
    alpha_dnv=alpha_dnv(aidxv); 
    if sum(acountv)>1, 
        for nn = 1:sum(acountv)-1, 
            mmsweep=nn+1:sum(acountv); 
            for mm = mmsweep, 
                %Correct for Quadrant 1 and 4 overlap/non-overlap and 
                % zero boundary 
                if alpha_dn_Nv(nn)>alpha_up_Nv(nn) && 
alpha_dn_Nv(nn)~=alpha_up_Nv(mm), 
                    alpha_dn_Nv(nn)=alpha_dn_Nv(nn)-2*pi; 
                    alpha_dn_Pv(nn)=alpha_dn_Pv(nn)-2*pi; 
                end 
                if alpha_dn_Nv(mm)>alpha_up_Nv(mm) && 
alpha_dn_Nv(mm)~=alpha_up_Nv(nn), 
                    alpha_dn_Nv(mm)=alpha_dn_Nv(mm)-2*pi; 
                    alpha_dn_Pv(mm)=alpha_dn_Pv(mm)-2*pi; 
                end 
                if alpha_up_Nv(nn)>alpha_dn_Nv(mm) && 
alpha_dn_Pv(mm)<alpha_up_Pv(nn), 
                    overlapv_reg=[overlapv_reg;nn mm]; 
                    [temp loc]=max([alpha_up_Pv(nn) alpha_up_Pv(mm)]); 
                    if loc==1, 
                        alpha_upv(mm)=alpha_upv(nn); 
                        alpha_up_dotv(mm)=alpha_up_dotv(nn); 
                        %%ALS 
                        alpha_up_Pv(mm)=alpha_up_Pv(nn); 
                        alpha_up_Nv(mm)=alpha_up_Nv(nn); 
                        %% 
                    elseif loc==2, 
                        alpha_upv(nn)=alpha_upv(mm); 
                        alpha_up_dotv(nn)=alpha_up_dotv(mm); 
                        %%ALS 
                        alpha_up_Pv(nn)=alpha_up_Pv(mm); 
                        alpha_up_Nv(nn)=alpha_up_Nv(mm); 
                        %% 
                    end 
                    [temp1 loc1]=min([alpha_dn_Nv(nn) 
alpha_dn_Nv(mm)]); 
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                    if loc1==1, 
                        alpha_dnv(mm)=alpha_dnv(nn); 
                        alpha_dn_dotv(mm)=alpha_dn_dotv(nn); 
                        %%ALS 
                        alpha_dn_Nv(mm)=alpha_dn_Nv(nn); 
                        alpha_dn_Pv(mm)=alpha_dn_Pv(nn); 
                        %% 
                    elseif loc1==2, 
                        alpha_dnv(nn)=alpha_dnv(mm); 
                        alpha_dn_dotv(nn)=alpha_dn_dotv(mm); 
                        %%ALS 
                        alpha_dn_Nv(nn)=alpha_dn_Nv(mm); 
                        alpha_dn_Pv(nn)=alpha_dn_Pv(mm); 
                        %% 
                    end 
                end 
            end 
        end 
    end 
end 
alpha_up_p=[];alpha_dn_p=[];alpha_up_pv=[];alpha_dn_pv=[]; 
alpha_up_p = alpha_up; 
alpha_dn_p = alpha_dn; 
alpha_up_pv = alpha_upv; 
alpha_dn_pv = alpha_dnv; 
  
%horizontal evasive maneuver 
for jj=1:length(alpha_up), 
    alpha_up_wrap = wrap_mpi2pi(alpha_up(jj)); 
    alpha_dn_wrap = wrap_mpi2pi(alpha_dn(jj)); 
    alpha_up_norm = alpha_up_wrap-alpha; 
    alpha_dn_norm = alpha_dn_wrap-alpha; 
    if alpha_up_norm<alpha_dn_norm, 
        alpha_dn_norm=alpha_dn_norm-2*pi; 
    end 
    % 
    if flag == 0, 
        if alpha_up_dot(jj)>=0 && alpha_dn_dot(jj)<=0, 
            if abs(alpha_up_dot(jj))<=abs(alpha_dn_dot(jj)), 
                angle=alpha_dn(jj); 
                angle_dot = alpha_dn_dot(jj); flag=2; 
            else 
                angle=alpha_up(jj); 
                angle_dot = alpha_up_dot(jj); flag=1; 
            end 
        elseif alpha_up_dot(jj)<=0 && alpha_dn_dot(jj)>=0, 
            if abs(alpha_up_dot(jj))<=abs(alpha_dn_dot(jj)), 
                angle=alpha_dn(jj); 
                angle_dot = alpha_dn_dot(jj); flag=2; 
            else 
                angle=alpha_up(jj); 
                angle_dot = alpha_up_dot(jj); flag=1; 
            end 
        elseif alpha_up_dot(jj)>=0 && alpha_dn_dot(jj)>=0, 
            if abs(alpha_up_dot(jj))<=abs(alpha_dn_dot(jj)), 
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                angle=alpha_up(jj); 
                angle_dot = alpha_up_dot(jj); flag=1; 
            else 
                angle=alpha_dn(jj); 
                angle_dot = alpha_dn_dot(jj); flag=2; 
            end 
        elseif alpha_up_dot(jj)<=0 && alpha_dn_dot(jj)<=0, 
            if abs(alpha_up_dot(jj))<=abs(alpha_dn_dot(jj)), 
                angle=alpha_up(jj); 
                angle_dot = alpha_up_dot(jj); flag=1; 
            else 
                angle=alpha_dn(jj); 
                angle_dot = alpha_dn_dot(jj); flag=2; 
            end 
        end 
    elseif flag==1, 
        angle=alpha_up(jj); 
        angle_dot = alpha_up_dot(jj); 
    elseif flag==2, 
        angle=alpha_dn(jj); 
        angle_dot = alpha_dn_dot(jj); 
    end 
    angle_dot_vec=angle_dot; 
    % 
    if ((alpha_up_norm >=0.0) && (alpha_dn_norm<=0)) ||... 
            ((alpha_up_norm <= -3*pi/2) && (alpha_dn_norm <=-2*pi)) 
||... 
            ((alpha_up_norm >= 2*pi) && (alpha_dn_norm >=3*pi/2)), 
        evasion = 1; 
        % 
        % proportional gain 
        N = 2; 
        % acceleration command 
        a = N*V_O*angle_dot; 
        % UAS accleration command components 
        vdot(jj) = -a * sin(angle - alpha); 
        alphadot(jj) = -a/V_O * cos(angle - alpha); 
  
    else 
        alphadot(jj) = 0.0; 
        vdot(jj) = 0.0; 
    end 
  
end 
  
%vertical evasive maneuver 
for jj=1:length(alpha_upv), 
    alpha_up_wrapv = wrap_mpi2pi(alpha_upv(jj)); 
    alpha_dn_wrapv = wrap_mpi2pi(alpha_dnv(jj)); 
    alpha_up_normv = alpha_up_wrapv-gamma; 
    alpha_dn_normv = alpha_dn_wrapv-gamma; 
    if alpha_up_normv<alpha_dn_normv, 
        alpha_dn_normv=alpha_dn_normv-2*pi; 
    end 
    % 
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    if flagv == 0, 
        if alpha_up_dotv(jj)>=0 && alpha_dn_dotv(jj)<=0, 
            if abs(alpha_up_dotv(jj))<=abs(alpha_dn_dotv(jj)), 
                anglev=alpha_upv(jj); 
                angle_dotv = alpha_up_dotv(jj); flagv=1; 
            else 
                anglev=alpha_dnv(jj); 
                angle_dotv = alpha_dn_dotv(jj); flagv=2; 
            end 
        elseif alpha_up_dotv(jj)<=0 && alpha_dn_dotv(jj)>=0, 
            if abs(alpha_up_dotv(jj))<=abs(alpha_dn_dotv(jj)), 
                anglev=alpha_dnv(jj); 
                angle_dotv = alpha_dn_dotv(jj); flagv=2; 
            else 
                anglev=alpha_upv(jj); 
                angle_dotv = alpha_up_dotv(jj); flagv=1; 
            end 
        elseif alpha_up_dotv(jj)>=0 && alpha_dn_dotv(jj)>=0, 
            if abs(alpha_up_dotv(jj))<=abs(alpha_dn_dotv(jj)), 
                anglev=alpha_dnv(jj); 
                angle_dotv = alpha_dn_dotv(jj); flagv=2; 
            else 
                anglev=alpha_upv(jj); 
                angle_dotv = alpha_up_dotv(jj); flagv=1; 
            end 
        elseif alpha_up_dotv(jj)<=0 && alpha_dn_dotv(jj)<=0, 
            if abs(alpha_up_dotv(jj))<=abs(alpha_dn_dotv(jj)), 
                anglev=alpha_upv(jj); 
                angle_dotv = alpha_up_dotv(jj); flagv=1; 
            else 
                anglev=alpha_dnv(jj); 
                angle_dotv = alpha_dn_dotv(jj); flagv=2; 
            end 
        end 
    elseif flagv==1, 
        anglev=alpha_upv(jj); 
        angle_dotv = alpha_up_dotv(jj); 
    elseif flagv==2, 
        anglev=alpha_dnv(jj); 
        angle_dotv = alpha_dn_dotv(jj); 
    end 
    angle_dot_vecv=angle_dotv; 
    %ALS 
    anglev=wrap_mpi2pi(anglev); 
    % 
    if (alpha_up_normv >=0.0) && (alpha_dn_normv<=0), 
        evasionv = 1; 
        % 
        % proportional gain 
        N = 2; 
        % acceleration command 
        a = N*V_O*angle_dotv; 
        % UAS accleration command components 
        vdotv(jj) = -a * sin(anglev - gamma); 
        gammadot(jj) = -a/V_O * cos(anglev - gamma); 
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    else 
        gammadot(jj) = 0.0; 
        vdotv(jj) = 0.0; 
    end 
  
end 
  
if isempty(alpha_up), 
    alphadot=[]; 
    vdot=[]; 
end 
if isempty(alpha_upv), 
    gammadot=[]; 
    vdotv=[]; 
end 
  
%Choose command from vector of potential commands 
if evasion == 1 && evasionv ==1 && norm([alphadot vdot gammadot 
vdotv])~=0, 
    %Conflict Properties 
    conflict = 1; 
    cflct_cone = find(alphadot~=0); 
    cflct_int = []; 
    for ww=1:length(cflct_cone), 
        for xx=1:length(acount), 
            if cflct_cone(ww)<=sum(acount(1:xx)), 
                if isempty(cflct_int) || xx~=cflct_int(end), 
                    cflct_int=[cflct_int xx]; %record index of intruder 
                    break; 
                end 
            end 
        end 
        if cflct_int(end)==length(acount), 
            break; %break loop if there is already a conflict with the 
last intruder  
        end 
    end 
    cflct_conev = find(gammadot~=0); 
    cflct_intv = []; 
    for ww=1:length(cflct_conev), 
        for xx=1:length(acountv), 
            if cflct_conev(ww)<=sum(acountv(1:xx)), 
                if isempty(cflct_intv) || xx~=cflct_intv(end), 
                    cflct_intv=[cflct_intv xx]; %record index of 
intruder 
                    break; 
                end 
            end 
        end 
        if cflct_intv(end)==length(acountv), 
            break; %break loop if there is already a conflict with the 
last intruder  
        end 
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    end 
     
    %Commands 
    sad=sum(alphadot); 
    ssad=sign(sad); 
    sadv=sum(gammadot); 
    ssadv=sign(sadv); 
    if ssad>0, 
        i1=find(alphadot>0); 
        [mad,imad]=min(alphadot(i1)); 
        i11=i1(imad); 
        vdotc1 = vdot(i11); 
        alphadotc = alphadot(i11); 
    elseif ssad<0, 
        i2=find(alphadot<0); 
        [mad2,imad2]=max(alphadot(i2)); 
        i22=i2(imad2); 
        vdotc1 = vdot(i22); 
        alphadotc = alphadot(i22); 
    else 
        vdotc1 = 0.0; 
        alphadotc = 0.0; 
        flag=0; 
        evasion=0; 
    end 
    if ssadv>0, 
        i1=find(gammadot>0); 
        [mad,imad]=min(gammadot(i1)); 
        i11=i1(imad); 
        if ~isempty(i11) 
            vdotc2 = vdotv(i11); 
            gammadotc = gammadot(i11)-vdotc1/V_O*sin(gamma); 
        end 
    elseif ssadv<0, 
        i2=find(gammadot<0); 
        [mad2,imad2]=max(gammadot(i2)); 
        i22=i2(imad2); 
        if ~isempty(i22) 
            vdotc2 = vdotv(i22); 
            gammadotc = gammadot(i22)-vdotc1/V_O*sin(gamma); 
        end 
    else 
        vdotc2 = 0.0; 
        gammadotc = -vdotc1/V_O*sin(gamma); 
        flagv=0; 
        evasionv=0; 
    end 
    vdotc = vdotc1*cos(gamma) + vdotc2; 
else 
    conflict = 0; 
    cflct_int = []; 
    cflct_intv = []; 
    vdotc = 0.0; 
    alphadotc = 0.0; 
    gammadotc = 0.0; 
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    evasion = 0; 
    evasionv = 0; 
    flag=0; 
    flagv=0; 
end 
  
% cc_plot(Ni,r,x_O,y_O,z_O,V_O,alpha,gamma,x_F,y_F,z_F,V_F,... 
%     
beta,chi,R,Rv,VO,violation,x_ccv,y_ccv,z_ccv,alpha_up_p,alpha_dn_p,... 
%     alpha_up_pv,alpha_dn_pv,sensvol,acount,acountv) 
  
%Convert Collision Cone commands to Aircraft commands 
psidotc=-alphadotc; 
gamdotc=gammadotc; 
acc=vdotc; 
 

F_COLLISIONCONE4 
 
function [eta_up,eta_dn,eta_up_dot,eta_dn_dot] = 
f_collisioncone4(mu,nu,p,mudot,nudot,pdot) 
  
% FUNCTION f_collisioncone2 
% 
% [alpha_up,alpha_dn] = f_collisioncone2(mu,nu,p,mudot,nudot,pdot) 
% 
% INPUTS: 
%  mu = beta - theta0 
%  nu = V_A/V_B 
%  p  = R/sqrt(r0^2-R^2) - For Circular Object 
%     = abs(tan(psi0/2)) - For Irregular Shaped Object 
%  mudot = betadot - theta0dot 
%  nudot = A_A/V_B - nu*A_F/V_F 
%  pdot = -Vr*p^3*r0/(R^2) 
% 
% OUTPUTS: 
%  eta_up - upper angular collision cone limit 
%  eta_dn - lower angular collision cone limit 
%  
% This function calculates the angular limits of the collision cone 
from  
% the point A to the object B. There can be a double collision cone 
% depending on the geometry of the encounter. In this case, there will 
be 
% two sets of angular limits. 
  
A = (p*cos(mu) + sin(mu))/sqrt(p^2+1); 
zeta = asin(p/sqrt(p^2+1)); 
Atilde = (p*cos(mu) - sin(mu))/sqrt(p^2+1); 
zetatilde = pi - zeta; 
  
Adot = pdot*(cos(zeta)*cos(mu) - 
cos(zeta)^2*sin(zeta)*(p*cos(mu)+sin(mu))) + ... 
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    mudot*cos(zeta)*(cos(mu)-p*sin(mu)); 
zetadot = pdot*cos(zeta)^2; 
Atildedot = pdot*(-cos(zetatilde)*cos(mu) - 
cos(zetatilde)^2*sin(zetatilde)*(p*cos(mu)-sin(mu))) + ... 
    mudot*cos(zetatilde)*(cos(mu)+p*sin(mu)); 
zetatildedot = -zetadot; 
  
% Collision Cone Boundaries 
% Satisfy (Vr0 < 0) 
if cos(mu)/nu >= 1, 
    N1_up = []; 
    N1_dn = []; 
    %no cone 
    eta_up = []; 
    eta_dn = []; 
    eta_up_dot = []; 
    eta_dn_dot = []; 
    return; 
elseif (cos(mu)/nu >= -1 && cos(mu)/nu < 1), 
    N1_up = acos(cos(mu)/nu); 
    N1_dn = -acos(cos(mu)/nu); 
elseif cos(mu)/nu < -1, 
    N1_up = 2*pi; 
    N1_dn = 0; 
end 
% Satisfy (Vth0^2 <= p^2*Vr0^2) -> (Vth0 <= -p*Vr0) 
if A/nu > 1, 
    N21_up = []; 
    N21_dn = []; 
    N21_up_dot = []; 
    N21_dn_dot = []; 
elseif (A/nu >= 0 && A/nu <= 1), 
    N21_up = pi - asin(A/nu) - zeta; 
    N21_dn = asin(A/nu) - zeta; 
    N21_up_dot = tan(pi-N21_up-zeta)*nudot/nu-Adot/(cos(pi-N21_up-
zeta)*nu)-zetadot; 
    N21_dn_dot = Adot/(cos(N21_dn+zeta)*nu)-tan(N21_dn+zeta)*nudot/nu-
zetadot; 
elseif (A/nu > -1 && A/nu < 0), 
    N21_up = -pi - asin(A/nu) - zeta; 
    N21_dn = asin(A/nu) - zeta; 
    N21_up_dot = tan(-pi-N21_up-zeta)*nudot/nu-Adot/(cos(-pi-N21_up-
zeta)*nu)-zetadot; 
    N21_dn_dot = Adot/(cos(N21_dn+zeta)*nu)-tan(N21_dn+zeta)*nudot/nu-
zetadot; 
elseif A/nu <= -1, 
    N21_up = 2*pi; 
    N21_dn = 0; 
    N21_up_dot = 0; 
    N21_dn_dot = 0; 
end 
% Satisfy (Vth0^2 <= p^2*Vr0^2) -> (p*Vr0 <= Vth0) 
if Atilde/nu > 1, 
    N22_up = []; 
    N22_dn = []; 
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    N22_up_dot = []; 
    N22_dn_dot = []; 
elseif (Atilde/nu >= 0 && Atilde/nu <= 1), 
    N22_up = pi - asin(Atilde/nu) - zetatilde; 
    N22_dn = asin(Atilde/nu) - zetatilde; 
    N22_up_dot = tan(pi-N22_up-zetatilde)*nudot/nu-Atildedot/(cos(pi-
N22_up-zetatilde)*nu)-zetatildedot; 
    N22_dn_dot = Atildedot/(cos(N22_dn+zetatilde)*nu)-
tan(N22_dn+zetatilde)*nudot/nu-zetatildedot; 
elseif (Atilde/nu > -1 && Atilde/nu < 0), 
    N22_up = -pi - asin(Atilde/nu) - zetatilde; 
    N22_dn = asin(Atilde/nu) - zetatilde; 
    N22_up_dot = tan(-pi-N22_up-zetatilde)*nudot/nu-Atildedot/(cos(-pi-
N22_up-zetatilde)*nu)-zetatildedot; 
    N22_dn_dot = Atildedot/(cos(N22_dn+zetatilde)*nu)-
tan(N22_dn+zetatilde)*nudot/nu-zetatildedot; 
elseif Atilde/nu <= -1, 
    N22_up = 2*pi; 
    N22_dn = 0; 
    N22_up_dot = 0; 
    N22_dn_dot = 0; 
end 
% N21 |-| N22 
if ((A/nu > 1) || (Atilde/nu >1)), 
    N2_up = []; 
    N2_dn = []; 
    N2_up_dot = []; 
    N2_dn_dot = []; 
elseif (A/nu > -1 && A/nu <= 1) && (Atilde/nu > -1 && Atilde/nu <= 1), 
    if (nu >= 1) && (round(zeta*1e10)/1e10 >= 
round((0.5*abs(asin(A/nu)+asin(Atilde/nu)))*1e10)/1e10), 
        N2_up = N22_up; 
        N2_dn = N21_dn; 
        N2_up_dot = N22_up_dot; 
        N2_dn_dot = N21_dn_dot; 
    elseif (nu < 1) && ((zeta >= 0) && (zeta <= 
0.5*abs(asin(A/nu)+asin(Atilde/nu)))), 
        N2_up = [N22_up N21_up]; 
        N2_dn = [N21_dn N22_dn]; 
        N2_up_dot = [N22_up_dot N21_up_dot]; 
        N2_dn_dot = [N21_dn_dot N22_dn_dot]; 
    else 
        N2_up = []; 
        N2_dn = []; 
        N2_up_dot = []; 
        N2_dn_dot = []; 
    end 
else 
    if (A/nu <= -1) && ((Atilde/nu <= 1) && (Atilde/nu > -1)), 
        N2_up = N22_up; 
        N2_dn = N22_dn; 
        N2_up_dot = N22_up_dot; 
        N2_dn_dot = N22_dn_dot; 
    elseif (Atilde/nu <= -1) && ((A/nu <= 1) && (A/nu > -1)), 
        N2_up = N21_up; 
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        N2_dn = N21_dn; 
        N2_up_dot = N21_up_dot; 
        N2_dn_dot = N21_dn_dot; 
    elseif (A/nu <= -1) && (Atilde/nu <= -1), 
        N2_up = 2*pi; 
        N2_dn = 0; 
        N2_up_dot = 0; 
        N2_dn_dot = 0; 
    end 
end 
  
eta_up = N2_up; 
eta_dn = N2_dn; 
eta_up_dot = N2_up_dot; 
eta_dn_dot = N2_dn_dot; 
  
 
WRAP_MPI2PI 
 
function [angleOUT] = wrap_mpi2pi(angleIN) 
for ii=1:length(angleIN), 
    if angleIN(ii)>pi, 
        angleOUT(ii) = angleIN(ii) - 2*pi; 
    elseif angleIN(ii)<-pi, 
        angleOUT(ii) = angleIN(ii) + 2*pi; 
    else 
        angleOUT(ii) = angleIN(ii); 
    end 
end 
 
 
WRAP_NEG 
 
function [angleOUT] = wrap_neg(angleIN) 
angleOUT=angleIN; 
for ii=1:length(angleIN), 
    while angleOUT(ii)>0, 
        angleOUT(ii) = angleOUT(ii) - 2*pi;  
    end 
end 
 
 
WRAP_POS 
 
function [angleOUT] = wrap_pos(angleIN) 
angleOUT=angleIN; 
for ii=1:length(angleIN), 
    while angleOUT(ii)<0, 
        angleOUT(ii) = angleOUT(ii) + 2*pi;  
    end 
end 
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CC_PLOT 
 
function cc_plot(Ni,r,x_O,y_O,z_O,V_O,alpha,gamma,x_F,y_F,z_F,V_F,... 
    
beta,chi,R,Rv,VO,violation,x_ccv,y_ccv,z_ccv,alpha_up_p,alpha_dn_p,... 
    alpha_up_pv,alpha_dn_pv,sensvol,acount,acountv) 
  
persistent counter 
global Ni_loop 
if isempty(counter), 
    figure(1) 
    clf 
    counter=1; 
end 
if counter<=Ni_loop, 
    figure(1) 
    hold on 
    counter=counter+1; 
else 
    figure(1) 
    clf 
    hold on 
    counter=2; 
end 
  
%Calculate velocity components 
Vx_O = V_O*cos(alpha)*cos(gamma); 
Vy_O = V_O*sin(alpha)*cos(gamma); 
Vz_O = V_O*sin(gamma); 
Vx_F = V_F.*cos(beta).*cos(chi); 
Vy_F = V_F.*sin(beta).*cos(chi); 
Vz_F = V_F.*sin(chi); 
  
anglecircle = linspace(0,2*pi,200); 
  
xcircle = 
x_F*ones(1,length(anglecircle))+R*ones(Ni,1)*cos(anglecircle); 
ycircle = 
y_F*ones(1,length(anglecircle))+R*ones(Ni,1)*sin(anglecircle); 
zcircle = z_F*ones(1,length(anglecircle)); 
xcirclev = 
(x_ccv+x_O)*ones(1,length(anglecircle))+Rv.*ones(Ni,1).*cos(alpha)*cos(
anglecircle); 
ycirclev = 
(y_ccv+y_O)*ones(1,length(anglecircle))+Rv.*ones(Ni,1).*sin(alpha)*cos(
anglecircle); 
zcirclev = 
(z_ccv+z_O)*ones(1,length(anglecircle))+Rv.*ones(Ni,1)*sin(anglecircle)
; 
  
llcount=1; 
llcountv=1; 
% figure(1) 
% clf 
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% hold on 
view(-30,30) 
%view(0,90) 
%view(0,0) 
for kk = 1:Ni, 
    if (~isempty(alpha_up_p) || ~isempty(alpha_up_pv)) && violation == 
0, 
        plot3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],'b-*') 
        quiver3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],[Vx_O 
Vx_F(kk)],[Vy_O Vy_F(kk)],[Vz_O Vz_F(kk)],'AutoScale','off') 
        if sensvol(kk) == 1; 
            
hdl1=plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'k');set(hdl1,'
Color',[212 208 200]/255) 
            hdl2=plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-
VO,'k');set(hdl2,'Color',[212 208 200]/255) 
            
hdl3=plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'k');set(hdl3,'
Color',[212 208 200]/255) 
        else 
            plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'k') 
            plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-VO,'k') 
            plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'k') 
        end 
        plot3(x_ccv+x_O,y_ccv+y_O,z_ccv+z_O,'c*') 
        for ll=llcount:acount(kk)+llcount-1, 
            plot3([x_O r(kk)*cos(alpha_dn_p(ll))+x_O],[y_O 
r(kk)*sin(alpha_dn_p(ll))+y_O],[z_O z_O],'r') 
            plot3([x_O r(kk)*cos(alpha_up_p(ll))+x_O],[y_O 
r(kk)*sin(alpha_up_p(ll))+y_O],[z_O z_O],'r') 
            
quiver3(r(kk)/2.*cos(alpha_up_p(ll))+x_O,r(kk)/2.*sin(alpha_up_p(ll))+y
_O,z_O,sin(alpha_up_p(ll)),-
cos(alpha_up_p(ll)),0,'g','AutoScale','off') 
            
quiver3(r(kk)/2.*cos(alpha_dn_p(ll))+x_O,r(kk)/2.*sin(alpha_dn_p(ll))+y
_O,z_O,-
sin(alpha_dn_p(ll)),cos(alpha_dn_p(ll)),0,'g','AutoScale','off') 
            llcount=llcount+1; 
        end 
        for ll=llcountv:acountv(kk)+llcountv-1, 
            plot3([x_O r(kk)*cos(alpha_dn_pv(ll))*cos(alpha)+x_O],[y_O 
r(kk)*cos(alpha_dn_pv(ll))*sin(alpha)+y_O],[z_O 
r(kk)*sin(alpha_dn_pv(ll))+z_O],'r') 
            plot3([x_O r(kk)*cos(alpha_up_pv(ll))*cos(alpha)+x_O],[y_O 
r(kk)*cos(alpha_up_pv(ll))*sin(alpha)+y_O],[z_O 
r(kk)*sin(alpha_up_pv(ll))+z_O],'r') 
            
quiver3(r(kk)/2.*cos(alpha_up_pv(ll))*cos(alpha)+x_O,r(kk)/2.*cos(alpha
_up_pv(ll))*sin(alpha)+y_O,r(kk)/2.*sin(alpha_up_pv(ll))+z_O,sin(alpha_
up_pv(ll))*cos(alpha),sin(alpha_up_pv(ll))*sin(alpha),-
cos(alpha_up_pv(ll)),'g','AutoScale','off') 
            
quiver3(r(kk)/2.*cos(alpha_dn_pv(ll))*cos(alpha)+x_O,r(kk)/2.*cos(alpha
_dn_pv(ll))*sin(alpha)+y_O,r(kk)/2.*sin(alpha_dn_pv(ll))+z_O,-
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sin(alpha_dn_pv(ll))*cos(alpha),-
sin(alpha_dn_pv(ll))*sin(alpha),cos(alpha_dn_pv(ll)),'g','AutoScale','o
ff') 
            llcountv=llcountv+1; 
        end 
         
    elseif violation == 1, 
        plot3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],'r-*') 
        quiver3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],[Vx_O 
Vx_F(kk)],[Vy_O Vy_F(kk)],[Vz_O Vz_F(kk)],'AutoScale','off') 
        plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'r') 
        plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-VO,'r') 
        plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'r') 
        plot3(x_ccv+x_O,y_ccv+y_O,z_ccv+z_O,'c*') 
         
    else 
        plot3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],'b-*') 
        quiver3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],[Vx_O 
Vx_F(kk)],[Vy_O Vy_F(kk)],[Vz_O Vz_F(kk)],'AutoScale','off') 
        if sensvol(kk) == 1; 
            
hdl1=plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'k');set(hdl1,'
Color',[212 208 200]/255) 
            hdl2=plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-
VO,'k');set(hdl2,'Color',[212 208 200]/255) 
            
hdl3=plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'k');set(hdl3,'
Color',[212 208 200]/255) 
        else 
            plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'k') 
            plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-VO,'k') 
            plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'k') 
        end 
        plot3(x_ccv+x_O,y_ccv+y_O,z_ccv+z_O,'c*') 
         
    end 
end 
hold off 
plotlim=9; 
%axis([x_O-plotlim x_O+plotlim y_O-plotlim*8/10 y_O+plotlim*8/10 z_O-
plotlim/3 z_O+plotlim/3]) 
axis equal 
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